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ABSTRACT 
 

LANDSCAPE-SCALE MODELING OF DROUGHT- AND INSECT-RELATED TREE MORTALITY  
IN NORTHERN NEW MEXICO 

 
 

By 
 

Gjertrud E. Aney 
 
 

Master of Applied Geography 
 
 

NEW MEXICO STATE UNIVERSITY 
 

LAS CRUCES, NEW MEXICO 
 

December 2020 
 

Dr. Michaela Buenemann, Chair 
 
 
 

Pinyon-juniper woodlands represent the third-largest vegetation type in the United States and 

an important ecotype for wildlife and humans. Large-scale woodland die-off events have 

implications for a range of ecosystem services and can contribute to increased wildfire hazard. 

Understanding the relationships between environmental factors and episodic drought- and 

insect-related mortality in pinyon-juniper woodlands can provide important information for 

land managers, particularly in the face of climatic changes, which may bring intense droughts 

with increasing frequency. I used random forest, logistic regression, and conditional inference 

trees with diverse bioclimatic, edaphic, topographic, and anthropogenic variables to predict and 

explain drought- and insect-related pinyon mortality in northern New Mexico. Mortality 

presence locations were identified using multiple endmember spectral mixture analysis. 
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Bioclimatic variables were the most explanatory of mortality, followed by edaphic and then 

topographic variables. The anthropogenic factor, presence of grazing, had no influence on 

mortality. The final random forest model predicted mortality occurrence with 80 to 83 percent 

balanced overall accuracy, and contained four bioclimatic variables – isothermality, minimum 

temperature of the coldest month, precipitation of the warmest quarter, and Normalized 

Difference Moisture Index (NDMI). These data are all available either pre-packaged or easily 

calculated by land managers for locations in the conterminous U.S., and may represent a rapid 

and cost-effective means of evaluating risk for drought related mortality at the landscape scale. 

Correlation tables referenced in section 3.6.3 are included as a supplemental file, and are 

identical to the information presented in Appendix C.  

 

Keywords:  pinyon, drought, die-off, random forest, logistic regression, conditional inference 

trees 

 



 vii 

TABLE OF CONTENTS 
 

LIST OF TABLES ............................................................................................................... x 

LIST OF FIGURES ............................................................................................................ xi 

LIST OF ABBREVIATIONS ............................................................................................. xiii 

1. Introduction ......................................................................................................... 1 

2. Background .......................................................................................................... 2 

2.1 The physiology of drought-related pinyon mortality ............................................. 7 

2.2 Genetics .................................................................................................................. 8 

2.3 Stand density and tree size ..................................................................................... 9 

2.4 Microsites .............................................................................................................. 10 

2.5 Historic range ........................................................................................................ 10 

2.6 Climatic variables .................................................................................................. 11 

2.7 Topographic variables ........................................................................................... 12 

2.8 Edaphic variables .................................................................................................. 14 

2.9 Grazing and management ..................................................................................... 18 

2.10 Scale and extent of previous studies .............................................................. 18 

3. Methods ............................................................................................................. 20 

3.1 Study area description .......................................................................................... 20 

3.2 Overview of methods ............................................................................................ 25 

3.3 Mapping pinyon mortality .................................................................................... 26 

3.3.1 Image acquisition ............................................................................................ 27 

3.3.2 Preprocessing .................................................................................................. 28 

3.3.3 Multiple Endmember Spectral Mixture Analysis (MESMA) ............................ 31 

3.4 Image differencing ................................................................................................ 40 

3.5 Selection of tree mortality presence and absence locations ............................... 41 

3.5.1 Determination of tree mortality presence and absence ................................ 42 

3.5.2 Determination of pre-drought woody plant cover classes ............................. 43 

3.5.3 Sampling of tree mortality presence and absence sites ................................. 43 

3.6 Potential explanatory variables ............................................................................ 44 



 viii 

3.6.1 Acquisition of potential explanatory data layers ............................................ 45 

3.6.2 Preprocessing of potential explanatory data layers ....................................... 46 

3.6.3 Statistical preprocessing of variables ............................................................. 54 

3.7 Modeling ............................................................................................................... 56 

3.7.1 Variables groupings for modeling ................................................................... 57 

3.7.2 Logistic regression ........................................................................................... 58 

3.7.3 Random forest ................................................................................................ 59 

3.7.4 Conditional inference trees ............................................................................ 60 

3.7.5 Model comparison .......................................................................................... 61 

3.7.6 Final model selection ...................................................................................... 62 

3.7.7 Mortality prediction maps .............................................................................. 63 

4. Results ................................................................................................................ 64 

4.1 MESMA .................................................................................................................. 64 

4.2 Tree cover changes ............................................................................................... 67 

4.3 Spatial models ....................................................................................................... 73 

4.3.1 Overall model performance ............................................................................ 73 

4.3.2 Comparison of model types ............................................................................ 76 

4.3.3 Factors explaining pinyon mortality ............................................................... 80 

4.3.4 Factors selected for the final model ............................................................. 100 

5. Discussion ........................................................................................................ 105 

5.1 MESMA performance .......................................................................................... 105 

5.2 Tree cover changes ............................................................................................. 106 

5.3 Model comparisons ............................................................................................ 108 

5.3.1 Comparison of model types .......................................................................... 109 

5.3.2 Comparison of variable types ....................................................................... 110 

5.4 Factors explaining pinyon mortality ................................................................... 114 

5.4.1 Variables used in the final model ................................................................. 114 

5.4.2 Other top variables ....................................................................................... 117 

5.5 Final model performance and implications ........................................................ 119 



 ix 

6. Conclusion ........................................................................................................ 120 

7. Literature Cited ................................................................................................ 122 

Appendix A: Potential explanatory variables ............................................................ 135 

Appendix B: Python code for calculating soil properties .......................................... 150 

Appendix C: Correlation matrices and variance inflation factors of potential explanatory 
variables ........................................................................................................... 155 

Appendix D: R scripts for spatial models .................................................................. 180 

Appendix E: Model performance .............................................................................. 188 

Appendix F: Univariate conditional inference stumps ............................................. 197 

 



 x 

LIST OF TABLES 

Table 1. Imagery used in the analysis. .......................................................................................... 27 

Table 2. Final endmembers used for the 2-, 3-, and 4-endmember run in each Area. ................ 36 

Table 3. Mortality presence and absence sample points in each pre-drought GV cover category 
and overall for each of the four Areas. ................................................................................... 44 

Table 4. Variables retained after statistical preprocessing. ......................................................... 55 

Table 5. Variables groupings used in models. .............................................................................. 57 

Table 6. Accuracy of MESMA GV estimates. ................................................................................ 66 

Table 7. Within-plot heterogeneity: training vs. testing points. .................................................. 66 

Table 8. Top 10 variables by mean decrease in accuracy (random forest). ................................. 81 

Table 9. Accuracy of mortality prediction maps (validation dataset). ....................................... 101 

Table 10. Accuracy of BCfin (analysis dataset) ........................................................................... 101 

 

 



1 

LIST OF FIGURES 

Figure 1. Distribution of pinyon-juniper woodlands in the Southwestern U.S., as mapped by the 
Southwest Regional Gap Analysis Project (SWReGAP) (Lowry et al. 2005) ............................. 3 

Figure 2. Influence of topography on microsite conditions. ........................................................ 13 

Figure 3. Left: general location of the study area within the state. Right: names and locations of 
the individual study areas. World Topo Basemap Sources: Esri, DeLorme, HERE, TomTom, 
Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, 
Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the 
GIS User Community. .............................................................................................................. 22 

Figure 4. Flowchart of methods. ................................................................................................... 26 

Figure 5. From left to right, examples of (A) low, (B) medium, and (C) high cover plots. ........... 38 

Figure 6. Accuracy assessment plot transects. ............................................................................. 39 

Figure 7. Observed vs. predicted green vegetation values. ......................................................... 67 

Figure 8. Abundance of green vegetation in 2000, as modeled by MESMA. ............................... 69 

Figure 9. Abundance of green vegetation in 2005, as modeled by MESMA. ............................... 70 

Figure 10. Absolute change in vegetation cover from 2000 to 2005, based on MESMA results. 71 

Figure 11. Percent change in vegetation cover from 2000 to 2005, based on MESMA results. . 72 

Figure 12. Area 1, all models ranked by balanced overall accuracy. RF = random forest, LR = 
logistic regression, ctree = conditional inference tree. .......................................................... 77 

Figure 13. Area 2, all models ranked by balanced overall accuracy. RF = random forest, LR = 
logistic regression, ctree = conditional inference tree. .......................................................... 78 

Figure 14. Area 3, all models ranked by balanced overall accuracy. RF = random forest, LR = 
logistic regression, ctree = conditional inference tree. .......................................................... 79 

Figure 15. Area 4, all models ranked by balanced overall accuracy. RF = random forest, LR = 
logistic regression, ctree = conditional inference tree. .......................................................... 80 

Figure 16. Area 1, variable importance in random forest models. .............................................. 83 

Figure 17. Area 2, variable importance in random forest models. .............................................. 84 

Figure 18. Area 3 variable importance in random forest models ................................................ 85 

Figure 19. Area 4, variable importance in random forest models. .............................................. 86 

Figure 20. All areas combined, variable importance in random forest models. .......................... 87 



xii 

Figure 21. Direction of the relationship between the variables identified in Table 9 and tree 
mortality, as indicated by the sign of the coefficient across all or the majority (where results 
were inconsistent) of logistic regression models run in each Area. ....................................... 88 

Figure 22. Significance of the relationship between variables and tree mortality in logistic 
regression models for Area 1. Results presented are for the ten variables identified from 
random forest in Table 9. ........................................................................................................ 89 

Figure 23. Significance of the relationship between variables and tree mortality in logistic 
regression models for Area 2. Results presented are for the ten variables identified from 
random forest in Table 9. ........................................................................................................ 90 

Figure 24. Significance of the relationship between variables and tree mortality in logistic 
regression models for Area 3. Results presented are for the ten variables identified from 
random forest in Table 9. ........................................................................................................ 90 

Figure 25. Significance of the relationship between variables and tree mortality in logistic 
regression models for Area 4. Results presented are for the ten variables identified from 
random forest in Table 9. ........................................................................................................ 91 

Figure 26. Significance of the relationship between variables and tree mortality in logistic 
regression models, aggregated across all four Areas. Results presented are for the ten 
variables identified from random forest in Table 9. ............................................................... 91 

Figure 27. Area 1, univariate conditional inference tree. Cross-validated overall accuracy = 77.8 
percent. Backtransformed value: 0.705 represents an isothermality value of 346. .............. 98 

Figure 28. Area 2, univariate conditional inference tree. Cross-validated overall accuracy = 74.8 
percent. Backtransformed value: 0.705 represents an isothermality value of 346. .............. 98 

Figure 29. Area 3, univariate conditional inference tree. Cross-validated overall accuracy = 57 
percent. Backtransformed value: 0.553 represents a temperature of -6.8 °C. ...................... 99 

Figure 30. Area 4, univariate conditional inference tree. Cross-validated overall accuracy = 61.9 
percent. Backtransformed value: -0.42 represents an isothermality value of 339. ............... 99 

Figure 31. BCfin predicted presence of mortality. ..................................................................... 102 

Figure 32. BCfin predicted probability of mortality. ................................................................... 103 

Figure 33. BCfin areas of misclassification. ................................................................................ 104 

 

  



xiii 

LIST OF ABBREVIATIONS 

Acronym Definition 

ASI Italian Space Agency 

AWC Available water capacity 

BLM U.S. Department of the Interior Bureau of Land Management 

CART Classification and regression tree 

CHELSA Climatologies at high resolution for the earth’s land surface areas 

CIR Color infrared 

CO Coarse (soil texture) 

ctree Conditional inference tree 

DEM Digital elevation model 

DLR German Aerospace Center 

EAR Endmember average root mean squared error 

ELC Empirical line calibration 

ENVI Harris Geospatial Solutions' Environment for Visualizing Images 

F Fine (soil texture) 

FAO Food and Agriculture Organization of the United Nations 

FDSI Forest Drought Stress Index 

GIS Geographic information systems 

GloVis USGS Global Visualization Viewer 

GV Green vegetation 

IDS Insect and disease survey 

JHU John Hopkins University 

JPL Jet Propulsion Laboratory 

LOGIC Land Office Geographic Information Center 

LR Logistic regression 

M Moderate (soil texture) 

MAE Mean average error 

MCO Moderately coarse (soil texture) 

MESMA Multiple Endmember Spectral Mixture Analysis 



xiv 

MF Moderately fine (soil texture) 

NASA National Aeronautics and Space Administration 

NDMI Normalized Difference Moisture Index 

NDVI Normalized Difference Vegetation Index 

NHD National Hydrography Dataset 

NIMA National Imagery and Mapping Agency 

NIR Near infrared 

NM New Mexico 

NPV Non-photosynthetic vegetation 

NRCS U.S. Department of Agriculture Natural Resources Conservation Service 

OOB Out of bag 

PAW Plant available water 

PPI Pixel Purity Index 

R2 Coefficient of determination 

RF Random forest 

RGB Red-green-blue (natural color) 

RMSE Root mean squared error 

SLO State Land Office 

SMACC Sequential Maximum Angle Convex Cone 

SRTM Shuttle Radar Topography Mission 

SSURGO Soil Survey Geographic Database 

SWIR Short-wave infrared 

TIGER Topologically Integrated Geographic Encoding and Referencing 

TM Thematic Mapper 

USFS United States Forest Service 

USGS United States Geological Survey 

VIF Variance inflation factor 

VIPER Visualization and Image Processing for Environmental Research 

VPD Vapor pressure deficit 

 



1 

1. Introduction 

Pinyon-juniper woodlands, composed of the co-dominant species pinyon pine (Pinus edulis, 

Pinus monophylla, Pinus spp.) and one or more species of juniper (Juniperus spp.), represent 

the third largest vegetation type in the United States and an important vegetation type for 

wildlife (Finch and Ruggiero 1993; Gottfried and Severson 1994; Paulin, Cook, and Dewey 1999; 

Chung-MacCoubrey 2005; Mueller et al. 2005) and humans (Gottfried and Severson 1994; 

Albert et al. 2004; Clifford et al. 2008; Floyd et al. 2009) in the Southwest. Circa the year 2002, 

the pinyon pine component of these woodlands in portions of the Southwest experienced 

widespread mortality (Breshears et al. 2005; Mueller et al. 2005; Shaw, Steed, and DeBlander 

2005). The mortality event has been attributed to a combination of drought and an outbreak of 

Ips confuses (pinyon ips) bark beetle (Shaw, Steed, and DeBlander 2005; McDowell et al. 2013), 

which seem to preferentially attack stressed trees (Negrón and Wilson 2003; Raffa et al. 2008). 

According to Breshears et al. (2005), we can expect droughts such as the one that occurred in 

the early 2000s to become more frequent in the future under our changing climate.  

Due to the valuable ecosystem services that forests and woodlands provide, predicting 

and explaining future die-off events is of great importance to land managers (Breshears et al. 

2018). Much research and attention has already been directed to gaining a better 

understanding of the aforementioned pinyon pine mortality event (Breshears et al. 2018); 

however, there are aspects which are still poorly understood and warrant further study, 

including the role of bark beetles and the relationship of elevation and tree stem density 

(Meddens et al. 2015). Of particular relevance to this study, Meddens et al. (2015) noted that 

previous studies of drought-related pinyon mortality often included only a subset of potential 
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explanatory variables, and they recommend that future studies include a broader range of such 

variables. The current study examines the relationship between tree mortality during the 

drought which occurred in the early 2000s and a range of topographic, edaphic, climatic, and 

land use variables at the landscape-scale in four study sites in north-central New Mexico.  

My objectives were to 1) map pinyon mortality across four study areas in north-central 

New Mexico at 30 m spatial resolution; 2) evaluate random forest, logistic regression, and 

conditional inference trees for their suitability to predict tree mortality, and 3) isolate the 

variables that have the greatest explanatory power for tree mortality. The findings of this study 

add to the body of knowledge regarding the spatial distribution and underlying factors of 

drought- and insect-related pinyon juniper woodland mortality, and may help inform forest 

management decisions. 

2. Background 

Pinyon juniper woodlands (Figure 1) are estimated to cover approximately 225,000 km2 of land 

in the western U.S. (Huffman et al. 2008); they are both a dominant (Gottfried and Severson 

1994; Huffman et al. 2008) and an important vegetation type in the Southwestern U.S. (Floyd et 

al. 2009). Ecologically, pinyon juniper woodlands offer important habitat, food, and/or breeding 

grounds to a diversity of species (Gottfried and Severson 1994; Paulin, Cook, and Dewey 1999; 

Chung-MacCoubrey 2005; Mueller et al. 2005), including at least 107 species of birds, 62 

species of mammals, an assortment of reptiles (Finch and Ruggiero 1993), and around 600 

microbial species that are associated with pinyon roots (Whitham et al. 2003). Economically, 
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pine nuts, produced by the pinyon pine (Pinus spp.), are a valuable cash crop (Gottfried and 

Severson 1994). From a cultural standpoint, these trees are important to several Native 

American tribes (Negrón and Wilson 2003; Clifford et al. 2008). Pinyon and juniper trees also 

offer a local supply of firewood (Albert et al. 2004), are harvested for holiday trees (Ffolliott et 

al. 1992), and have aesthetic value on the landscape (Floyd et al. 2009). 

 

Figure 1. Distribution of pinyon-juniper woodlands in the Southwestern U.S., as mapped by the Southwest 
Regional Gap Analysis Project (SWReGAP) (Lowry et al. 2005) 

 
Given all this, abrupt widespread mortality of pinyon-juniper woodlands is concerning. 

In the years spanning 2000-2003, a die-off event affecting an area of more than 12,000 km2 

occurred among the pinyon pine component of these woodlands (Breshears et al. 2005; 

Kleinman et al. 2012). This event had impacts on fire dynamics (Clifford et al. 2008; Progar, 
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Eglitis, and Lundquist 2009; Guardiola-Claramonte et al. 2011; Adams et al. 2012, 212), 

ecohydrology (Royer et al. 2010; Guardiola-Claramonte et al. 2011; Adams et al. 2012), and 

above-ground live carbon stocks (Huang et al. 2010), to name just a few.  

The sudden increase in dead trees led to altered fire dynamics (Clifford et al. 2008) and 

elevated fuel loads in areas of high mortality (Clifford et al. 2008; Progar, Eglitis, and Lundquist 

2009). In the years following the mortality event, several stand-replacing fires occurred in these 

areas (Progar, Eglitis, and Lundquist 2009). Heavy tree mortality has the potential to alter fire 

dynamics not only through increased standing fuel from dead trees, but also through processes 

such as the release of understory species, potential for high-density recruitment of young trees, 

and increased forest-floor litter (Adams et al. 2012). Wildfire can in turn increase the potential 

for soil erosion and affect hydrologic functioning beyond the changes already noted by 

Guardiola-Claramonte et al. (2011), who observed a decrease in basin wide water yield 

following the mortality event. 

Large scale tree mortality also alters hydrology by changing the amounts of evaporation, 

transpiration, and precipitation interception taking place at a site (Adams et al. 2012). The 

results of these changes can alter streamflow in affected basins, although the exact outcome 

can be highly variable based on site conditions (Adams et al. 2012). Despite the substantial loss 

of actively transpiring trees from affected areas, a study of hydrologic impacts in four mortality-

affected basins noted a decrease, rather than the expected increase, in water yield from the 

basin that could not be attributed to climatic variations (Guardiola-Claramonte et al. 2011). The 

authors suggest that the cause may be related to an increase in understory vegetation resulting 

in higher net transpiration and interrupting overland flow, possibly coupled with increased soil 
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evaporation (Guardiola-Claramonte et al. 2011) due to more incoming solar radiation reaching 

the ground surface (Royer et al. 2010). 

Extensive forest and woodland mortality events have the potential to convert areas that 

were carbon sinks into carbon sources by reducing net primary production and at the same 

time increasing heterotrophic respiration as killed trees decay (Kurz et al. 2008; Hicke et al. 

2013). In some cases, it may take years or decades for the affected area to recover (Huang et al. 

2010; Hicke et al. 2013). In a study of the pinyon-juniper woodlands of southwestern Colorado, 

for a time period spanning 2000-2005, Huang et. al (2010) revealed that the loss of above-

ground live carbon stocks due to bark beetle kills was 39 times greater than that of other 

disturbances such as wildfire and anthropogenic activities during the same time period. Hicke et 

al. (2013) similarly found in an analysis of forests (not limited to pinyon-juniper) in the western 

U.S. that bark beetles accounted for more killed live carbon biomass than fire, although in their 

study they concluded that forest harvesting accounted for slightly more than insects and fire 

combined. Given current climate projections, however, fires and insect outbreaks may become 

more severe and will likely continue to substantially affect the carbon budget associated with 

forest and woodland areas (Hicke et al. 2013). 

The widespread pinyon mortality seen in the early 2000s drought has been attributed 

largely to the interacting factors of drought conditions and a co-occurring infestation by pinyon 

ips bark beetles (Shaw, Steed, and DeBlander 2005; McDowell et al. 2013). Severe drought 

stress, however, is known to predispose a tree to subsequent insect infestation (Mattson and 

Haack 1987; Raffa et al. 2008; Santos and Whitham 2010; Gaylord et al. 2013) and Meddens et 

al. (2015) note that at times it may be difficult to separate the effects of drought from the 
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effects of bark beetles when evaluating the impacts on mortality. It is also interesting to note 

that according to Mueller et al. (2005), a severe drought also occurred in parts of the Southwest 

in 1996 that also resulted in high pinyon mortality, although no corresponding bark beetle 

outbreak was reported in association with that event (Mueller et al. 2005). Due to the difficulty 

in separating the effects of drought vs. bark beetle infestation on mortality, the two were 

considered collectively in this study, although much of the pinyon mortality within my study 

area was officially recorded by USFS Insect and Disease Surveys as being due to pinyon ips 

attack. Other authors (e.g., Clifford, Cobb, and Buenemann 2011) have noted that, in the case 

of the 2000s drought, trees killed by pinyon ips damage were still considered to be indirectly 

drought-related mortality. 

Some have referred to the 2000-2003 drought as a “global change-type drought” 

(Breshears et al. 2009) and suggested that we might expect to see such droughts with 

increasing frequency in the future under our changing climate (Breshears et al. 2005). By the 

end of the 21st century, global mean surface temperature is expected to increase, relative to 

1986-2005, anywhere from 0.3°C (low end of the most optimistic emissions model RPC2.6) to 

4.8°C (high end of the more pessimistic RCP8.5 model) (Pachauri, Mayer, and 

Intergovernmental Panel on Climate Change 2015). In the Southwestern U.S., aridity is 

expected to increase substantially (Seager et al. 2007). In an ensemble of 19 different climate 

prediction models evaluated in a study by Seager et al. (2007), only one indicated a predicted 

shift toward slightly wetter conditions by the end of the 21st century. 

Severe droughts have occurred in this region of the southwestern U.S. in the past; 

however, in a study comparing pinyon pine mortality during two notable periods of drought in 
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the Southwest (1953-1956; 2000-2003), Breshears et al. (2005) found that, although the 1950s 

drought was somewhat drier, the early 2000s drought was warmer and associated with higher 

mortality than the 1950s drought at the studied sites in Utah, Colorado, Arizona, and New 

Mexico. Weiss, Castro, and Overpeck (2009) also observed that the early 2000s drought was 

generally (with some variation by region) wetter but warmer than the 1950s drought, which 

may have resulted in greater vegetation water stress. 

The mortality event that occurred primarily in 2002 generated considerable activity in 

the published literature (discussed below), and as a result there is much that we now know 

about drought-related pinyon mortality, which some authors (Meddens et al. 2015; Breshears 

et al. 2018) have distilled neatly in short synthesis articles that summarize the studies that have 

been done to date on the subject. However, by way of introduction to the general classes of 

variables, a brief summary of relevant research is presented below. 

2.1 The physiology of drought-related pinyon mortality  

From a physiological standpoint, the exact mechanics of drought-related pinyon mortality are 

not yet perfectly understood (Breshears et al. 2013; Plaut et al. 2013) despite fairly extensive 

study (e.g., West et al. 2008; Plaut et al. 2012, 2013; Adams et al. 2013; Anderegg and Anderegg 

2013; Limousin et al. 2013; Dickman et al. 2015). Some (McDowell et al. 2008, 2011; Breshears 

et al. 2009; Adams et al. 2013; Dickman et al. 2015) suggested, however, that carbon starvation 

as a result of stomatal closure for extended periods of time may play a role, although hydraulic 

failure (Anderegg and Anderegg 2013) or some combination of these mechanisms has also been 

hypothesized (McDowell et al. 2008, 2011). Since pinyon trees are isohydric, the tree relies on 
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stomatal closure to maintain a constant midday leaf-water potential by regulating gas exchange 

and water lost through respiration (Breshears et al. 2009). This helps the tree survive in a 

water-scarce environment by preventing catastrophic xylem cavitation when soil water 

potential is low but atmospheric demands are high (McDowell et al. 2008; Breshears et al. 

2009; Plaut et al. 2012); however, it also prevents carbon assimilation as no photosynthesis is 

taking place (McDowell et al. 2008; Breshears et al. 2009; Limousin et al. 2013). Researchers 

have shown that trees can recover from relatively short periods [e.g., 2 (Plaut et al. 2012) to 4 

(Breshears et al. 2009) months], of near-zero carbon assimilation (Breshears et al. 2009; Plaut 

et al. 2012); however, if stomatal closure continues for extended periods of time [e.g., 7 (Plaut 

et al. 2012) to 10 (Breshears et al. 2009) months], the tree may use up all its carbon reserves 

and be at risk for death from carbon starvation or inability to withstand other stressors such as 

insect attack (Breshears et al. 2009). My study does not address tree physiological responses 

directly, but instead focuses on predicting mortality from observable environmental and 

management-related variables. 

2.2 Genetics 

There has been some interest in the possible effect of genetics or phenotype on drought 

related mortality. Specifically, pinyon trees resistant to stem-boring moth seem to have higher 

mortality, suggesting that resistance to one type of pest might come at the expense of 

increased susceptibility to another (Santos and Whitham 2010; Breshears et al. 2018). Some 

researchers have also observed that pinyon trees with higher climate sensitivity, inferred from 
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higher interannual variability in tree ring growth, are more prone to mortality during severe 

drought (Ogle, Whitham, and Cobb 2000; Macalady and Bugmann 2014). 

2.3 Stand density and tree size 

Higher tree density has been suggested as a contributor to drought-related mortality, both 

because of the effects of competition (Meddens et al. 2015), and because it creates a more 

favorable condition for bark beetle dispersal (Negrón and Wilson 2003; Raffa et al. 2008; Santos 

and Whitham 2010). The results of studies which examined this dynamic, however, have been 

mixed (Meddens et al. 2015). In a study unrelated to the 2000-2003 mortality event, higher 

stand density was correlated with higher probability of ips infestation (Negrón and Wilson 

2003), yet several studies that examined tree mortality patterns associated with the 2000-2003 

drought in relation to stand density found either weak (Macalady and Bugmann 2014) to no 

correlation (Clifford et al. 2008; Clifford, Cobb, and Buenemann 2011; Ganey and Vojta 2011), 

or a slightly negative correlation (Floyd et al. 2009; Clifford et al. 2013). Greenwood and 

Weisberg (2008), by contrast, found a scale-dependent (stronger at coarser scales) positive 

correlation between stand density and crown mortality in their Nevada study area. It has also 

been noticed that larger trees are more likely to die than smaller trees and that reproductive 

trees have higher mortality than non-reproductive ones (Mueller et al. 2005). Mueller et al. 

(2005) postulate that this may be related to the higher carbon cost associated with 

reproduction. Yet others (Negrón and Wilson 2003; Santos and Whitham 2010) have suggested 

this has to do with larger diameter trees being a better and thus preferred food source for 

pinyon ips. 
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2.4 Microsites 

Mueller et al (2005) note that, prior to the 2002 mortality event, a severe drought in 1996 

resulted in mortality within pinyon juniper woodlands, and that locations within their study 

area with high mortality in 1996 also had the highest mortality in 2002, suggesting a 

relationship between certain conditions at these locations and vulnerability to drought-related 

mortality (Mueller et al. 2005). Mueller et al. (2005) also note that, while bark beetle outbreaks 

are largely blamed for contributing to the 2002 die-off, 1996 saw some pinyon mortality as high 

as 70% yet no associated bark beetle outbreak was recorded. They also observe that, although 

the 1996 mortality reduced competition for water and nutrients among the remaining live trees 

at those sites, this did not seem to ward off additional mortality in the 2000s event. Gitlin et al. 

(2006) caution that developing models based only on climatic variables that generalize across 

large areas may miss many of the site-related nuances of mortality or survival, as their results 

indicated that mortality was highly variable and patchy across their study area. 

2.5 Historic range 

In considering pinyon mortality in association with severe but historically infrequent droughts 

such as the one in 2000-2003, there has been some interest in the influence of long-term site 

suitability on the observed mortality. Some have suggested that trees most susceptible to 

mortality were those growing on suboptimal sites to begin with (Greenwood and Weisberg 

2008). At the regional level, however, studies have indicated that mortality was actually highest 

within the traditional ranges of pinyon-juniper woodlands (Kleinman et al. 2012) and in the 

areas of the highest historic habitat suitability (Lloret and Kitzberger 2018). One suggested 
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explanation for this is that trees growing at the edges of the suitability envelope may be better 

adapted to withstand sub-optimal conditions (Lloret and Kitzberger 2018). While further study 

may be needed to disentangle these dynamics, there is some evidence that trees have a certain 

amount of plasticity to adapt to higher or lower water conditions (Hacke et al. 2000; Limousin 

et al. 2013). 

2.6 Climatic variables 

Precipitation, temperature, and evapotranspiration demands may be the most obvious place to 

begin looking when examining possible drivers of drought-related mortality. The literature 

suggests that they indeed can explain some, though not all, of the mortality associated with the 

early 2000s drought period. Clifford et al. (2013) found a threshold of 600 mm cumulative 2002-

2003 precipitation above which very few trees died and below which results were highly 

variable but included high possibility of mortality. There are some limited data to suggest that 

increased temperature can also hasten mortality in drought-stressed trees (Adams et al. 2009, 

2013); however, most studies that examined temperature in relation to drought-related pinyon 

mortality (Breshears et al. 2005; Weiss, Castro, and Overpeck 2009; Weiss, Betancourt, and 

Overpeck 2012; Clifford et al. 2013; Williams et al. 2013, but see Dickman et al. 2015) have 

focused on the influence of higher temperatures on higher atmospheric moisture demand, 

often expressed as vapor pressure deficit (VPD). Clifford et al. (2013) identified a VPD threshold 

of 1.7 kPa, which marked the partition between very low mortality and highly variable 

mortality. Williams et al. (2013) used extensive tree-ring data to devise a Forest Drought Stress 

Index (FDSI) which combined warm season VPD with cool season precipitation and accounted 
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for 82% of the variability in their tree-ring-derived FDSI, correlated strongly with satellite 

derived Normalized Difference Vegetation Index (NDVI), and correlated also with the mortality 

associated with the early 2000s drought. The authors caution, however, that more data are 

needed to confirm the relationship between FDSI and bark beetle outbreak as there may also 

be other unaccounted-for factors involved, such as stand characteristics and temperature 

effects on bark beetle populations. Huang et al. (2015) similarly used tree ring growth and 

precipitation information to calculate a tipping point of no growth after ~11 months of drought, 

and found that their calculated tipping point value—based on ring width index and 

standardized precipitation evapotranspiration index—performed well in partitioning areas of 

little mortality with areas of differential mortality in 2002 at the regional scale. 

2.7 Topographic variables 

Topography influences site conditions in a number of ways (Figure 2). South-facing slopes, for 

instance, are often more droughty than north-facing slopes in the same general location 

(Strahler and Strahler 2006). Slope steepness and slope curvature can both affect how quickly 

water leaves a site by runoff, which has an effect on how much or how little water infiltrates 

following a precipitation event (Strahler and Strahler 2006). Elevation can influence both 

temperature and moisture, and local relief tends to influence the likelihood of receiving rainfall 

run-on from other areas (Strahler and Strahler 2006).  
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Figure 2. Influence of topography on microsite conditions. 

 

Despite this, mortality patterns in relation to topography have generally yielded mixed 

results depending on the study. Breshears et al. (2005), in comparing the 2002 drought to the 

historic drought of the 1950s found that, although in the 1950s drought the highest mortality 

was at lower elevations, during the 2002 drought, the highest mortality was found in the higher 

(and typically wetter) elevations. In a region-wide study, Kleinman et al. (2012) similarly found 

that as elevation increased, so did damage intensity, although they cautioned that, due to 

limitations of their source data, this finding was based on absolute numbers of trees killed per 

acre and not a percentage of what was there to begin with. In contrast, Santos and Whitham 

(2010) found that probability of pinyon ips attack increases at lower elevations, likely due to 

increased water-stress (Santos and Whitham 2010). Others (Ganey and Vojta 2011; Clifford et 

al. 2013) found no relationship between elevation and tree mortality, although it should be 
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noted that Ganey and Vojta (2011) carried out their study on mixed conifers (which included 

pinyon pine) and ponderosa, not pinyon juniper woodlands. Weiss, Betancourt, and Overpeck 

(2012) found that most mortality occurred between 1500 m and 3500 m. Interestingly, they 

also note that the 1950s drought, to which the 2000s drought is often compared, was centered 

more over Mexico and the southeastern parts of the southwestern U.S. region, whereas the 

2000s one was centered more northward and over different terrain. Studies involving 

comparisons of local topography have shown more agreement – drought-related pinyon 

mortality has been found to be higher on south-facing slopes (Ogle, Whitham, and Cobb 2000; 

Gitlin et al. 2006), steeper slopes (Greenwood and Weisberg 2008; Santos and Whitham 2010), 

and lower slope positions (Greenwood and Weisberg 2008). 

2.8 Edaphic variables 

Several studies have examined the effects of various soil properties on drought-related tree 

mortality. Collectively, these studies have explored the relationship of mortality to soil available 

water holding capacity (AWC) (Clifford et al. 2013; Peterman et al. 2013), soil texture and/or 

parent material (Ogle, Whitham, and Cobb 2000; Moore et al. 2004; Gitlin et al. 2006; 

Greenwood and Weisberg 2008; Koepke, Kolb, and Adams 2010; Bowker et al. 2012; Looney et 

al. 2012), geologic age (Floyd et al. 2009; Looney et al. 2012), soil depth (Gitlin et al. 2006; 

Greenwood and Weisberg 2008; Floyd et al. 2009), pH (Greenwood and Weisberg 2008), and 

spatial distribution of plant available water (Breshears, Myers, and Barnes 2009). I do not 

include in this list the studies that have made direct soil moisture/water potential 
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measurements to better understand hydraulic and metabolic functioning of pinyon pines under 

drought stress, as their focus was not on examining the soil properties involved. 

Soil parent material, texture, and AWC are highly interrelated, as parent material 

influences texture, which in turn largely determines AWC (Petersen, Sack, and Gabler 2015). For 

this reason, I discuss them together here. The most broad-scale study of AWC comes from 

Peterman et al. (2013) who evaluated AWC and soil texture in relation to mortality across the 

affected region spanning four states and found that the majority of the reported mortality 

occurred on soils with <150 mm of AWC, with ~70% occurring on soils with an AWC <100 mm. A 

subsequent study (Clifford et al. 2013) done at a much finer scale, however, found that 

mortality was highly variable across all AWC levels, including those in the highest AWC class 

used by Peterman et al. (2013). Rather than directly calculating AWC, relatively more studies 

have looked at the influence of texture.  

Soil-water relations in arid environments can be somewhat complex (Noy-Meir 1973). 

Despite finer textured soils having the capacity to hold a greater amount of soil moisture per 

unit volume than coarse textured soils, data indicate that in water-scarce environments, 

coarser textured soils may actually be more productive than finer-textured loamy soils; this is 

known as the “inverse texture effect” (Noy-Meir 1973; Sala et al. 1988; Looney et al. 2012). This 

may be due to better water infiltration and deeper percolation in coarser textured soils (Sala et 

al. 1988; Looney et al. 2012), coupled with weaker matric forces than typically encountered in 

clayey soils (Bowker et al. 2012; Looney et al. 2012). A coarse or rocky surface texture can also 

have an effect similar to a mulch by reducing water lost to evaporation from the soil surface 

(Noy-Meir 1973; Bowker et al. 2012).  
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In general agreement with the proposed advantages of coarser textured soils, several 

studies (Ogle, Whitham, and Cobb 2000; Bowker et al. 2012) found mortality to be higher on 

the comparatively finer textured soils relative to coarse textured soils with otherwise similar 

conditions, although Ogle, Whitham, and Cobb (2000) also describe growth to be highest on the 

finer textured loamy soils. Gitlin et al. (2006) similarly observed higher mortality among one-

seed juniper in finer textured soils vs. coarser cinder-derived soils; however, they do also note 

that there was a lack of grass on the coarser soils, which may have reduced competitive stress. 

By contrast, Koepke, Kolb, and Adams (2010) found little difference in mortality across soils of 

three different parent material types and textures, although canopy dieback indicating water 

stress was highest at the sites with coarser texture. Greenwood and Weisberg (2008) also found 

at their study site in Nevada that pinyon mortality was higher on more acidic soils with low clay 

content and lower slope position. Incidentally, this was also the only study I have encountered 

that examined the role of pH. In a loosely related study regarding parent material, Moore et al. 

(2004) found that general mortality among several tree species differed substantially by rock 

type for some, but not all, of the studied species in the inland northwest; however, they 

hypothesize that this was in relation to nutrients available from the different rock types. 

Geologic age, which influences both texture and nutrient availability (Looney et al. 

2012), has also been examined for its correlation with drought stress and resultant tree 

mortality. In a study comparing the effects of geologic age on a chronosequence in Arizona of 

cinder-derived substrate and artificial water manipulations, the authors found that substrate 

age had a larger effect on pinyon growth than supplemental watering. They also note that tree 

growth dynamics and water response supported the aforementioned inverse texture effect 
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(Noy-Meir 1973). Unexpectedly, pinyon mortality was greatest at sites of intermediate soil age, 

which should have had the best combination of medium texture and adequate nutrient pool; 

however, since growth in those plots was also higher, the authors hypothesized that 

competition may have been greater there (Looney et al. 2012). Floyd et al. (2009), by contrast, 

note that they found no significant correlation between soil geologic age and mortality at their 

Colorado study site, but provided few other details enlarging on this finding. 

Regarding soil depth, a few studies have examined this but their results have been 

somewhat less informative than those of other soil properties. Gitlin et al. (2006) found that 

pinyon mortality was substantially higher in red cinder shallow soils than in black cinder deep 

soils; however, the influence of the differing parent materials between these two soil types is 

unknown as they did not report if they investigated that. Greenwood and Weisberg (2008) 

included soil depth as an initial variable for their models of tree mortality but did not interpret 

their findings in relation to this variable. Finally, Floyd et al. (2009) reported no significant 

correlation between soil depth and mortality at a Colorado study site, but provided few other 

details. 

Heterogeneity of plant available soil water (PAW) across space and depth has been 

documented at the patch level. Breshears, Myers, and Barnes (2009), quantified soil water at 

multiple depths for sites under tree canopies, at canopy edges, and in intercanopy spaces. 

Water was shown to be more frequently available near the surface beneath canopies vs. 

deeper in the profile at intercanopy locations; however, in severe drought years, this 

heterogeneity was reduced as plant available water became far less frequently available in all 

depths and locations. Plaut et al. (2012) reported in their study that involved making direct soil 
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moisture observations in regard to hydraulic function, that the measured leaf water potentials 

at several times indicated that trees were drawing water from a wetter layer below the depth 

of the deepest installed sensors (~100 cm), thus indicating the presence and utilization of deep 

soil water.  

Finally, in a study unrelated to pinyon pine but still relevant, (Hacke et al. 2000) found 

that addition of fertilizer to loblolly pine (Pinus taeda L.) trees decreased their overall root mass 

percentage and water extraction potential, thus potentially putting them at higher risk for 

drought-related dieback than those growing in otherwise similar conditions on a poorer 

nutrient supply. 

2.9 Grazing and management 

Although I could find no studies which expressly examined the influence of grazing or 

management practices on mortality during the 2000s drought, there is evidence that grazing 

may suppress grasses and thus decrease competition for water and nutrients (Harris, Asner, 

and Miller 2003; Romme et al. 2009; Shinneman and Baker 2009), which could conceivably be 

advantageous to trees under drought stress. Other management practices, such as tree 

thinning, controlled burns, or fire suppression, while not considered individually in this study, 

may also have an influence on both stand and understory dynamics (Hartsell et al. 2020).  

2.10 Scale and extent of previous studies 

The scale and geographical extent of studies on the 2000s pinyon mortality event varies. I found 

fifteen studies that examined drought-related pinyon or pinyon-juniper mortality in the 



19 

Southwest during the early 2000s time period. Of these, five studies were conducted at the 

regional level, encompassing parts of all four states in which the bulk of the mortality occurred 

(Breshears et al. 2005; Weiss, Castro, and Overpeck 2009; Kleinman et al. 2012; Peterman et al. 

2013; Lloret and Kitzberger 2018). Four studies were conducted at the landscape scale, 

examining a sizeable sub-section of the affected area (Gitlin et al. 2006; Huang et al. 2010; 

Clifford, Cobb, and Buenemann 2011; Clifford et al. 2013). Three studies were stand- or plot-

level analyses (Mueller et al. 2005; Clifford et al. 2008; Floyd et al. 2009). Three studies were at 

the individual tree level (Breshears et al. 2009; Koepke, Kolb, and Adams 2010; Macalady and 

Bugmann 2014). Additionally, Clifford et al. (2008) and Breshears et al. (2005) took a hybrid 

approach, gathering extremely detailed site conditions data at the plot or microsite scale and 

using them to assist interpretations of the regional-scale observed mortality. 

Of the studies listed above, four took place in Arizona (Mueller et al. 2005; Gitlin et al. 

2006; Koepke, Kolb, and Adams 2010; Clifford, Cobb, and Buenemann 2011), three in New 

Mexico (Breshears et al. 2009; Clifford et al. 2013; Macalady and Bugmann 2014), one in 

Colorado (Huang et al. 2010), and seven across multiple states (Breshears et al. 2005; Clifford et 

al. 2008; Floyd et al. 2009; Weiss, Castro, and Overpeck 2009; Kleinman et al. 2012; Peterman 

et al. 2013; Lloret and Kitzberger 2018). This count does not include studies conducted on the 

after-effects of the mortality, such as hydrologic effects, understory response, or juvenile 

recruitment. Additionally, as referenced above, numerous other studies examined drought-

related drivers and mechanisms of pinyon mortality in the 2000s in the southwestern U.S. 
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3. Methods 

The study was conducted on a landscape level, in a study area carefully chosen to be 

representative of varying degrees of pinyon mortality (ranging light to heavy). Pinyon mortality 

was first mapped at a fine spatial resolution, then assessed, and finally modeled using the 

models and potential explanatory variables described in this section. 

3.1 Study area description 

The general study area is located in north-central New Mexico where substantial pinyon 

mortality occurred during the early 2000s drought (Breshears et al. 2005; Clifford et al. 2008; 

USDA Forest Service, Forest Health Protection and its partners 2014). It has a total area of 

13,604 km2, and the centroid is 35.73863°, -106.00309°. The area is further subdivided into four 

discrete Areas, hereafter referred to as Area 1, Area 2, Area 3, and Area 4 (Figure 3). The 

decision to maintain four discrete study Areas rather than one large one was twofold. First, it 

allows for comparisons between Areas with different environmental and management regimes. 

Second, it made the image processing feasible for an overall large area at a fine spatial 

resolution (30 m). 

The inner boundaries of the four Areas were delineated roughly along natural breaks in 

the vegetation or geographic features such as mountain peaks, with attention to U.S. National 

Forest boundaries so that no Area contains parts of more than one National Forest. To 

determine the outer boundaries, I first roughly delineated a rectangular area encompassing the 

bulk of the 2000-2003 pinyon mortality across the region as shown by the USFS Insect and 

Disease Survey (IDS) shapefiles (USDA Forest Service, Forest Health Protection and its partners 
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2014). Then, using Southwest Regional Gap Analysis Project (SWReGAP) data (RS/GIS 

Laboratory, College of Natural Resources, Utah State University 2004) to isolate areas mapped 

as pinyon-juniper cover type, the data were resampled from 30 m to a coarser resolution of 

1,500 m based on majority, and a buffer of 3,000 m was applied to create a roughly continuous 

study area. To preserve spatial continuity, and as a result of the large buffers used, some areas 

of land cover that were not pinyon-juniper were included in the initial delineation. This problem 

was addressed at a later step and is explained at that point. All geoprocessing and analysis for 

study site selection was done in ArcGIS Desktop 10.5 (Environmental Systems Research 

Institute, Redlands, CA). 
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Figure 3. Left: general location of the study area within the state. Right: names and locations of the individual 
study areas. World Topo Basemap Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, 
USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), 
swisstopo, MapmyIndia, and the GIS User Community. 

Area 1 encompasses an area of 2,562 km2, and has its centroid at 35.09945°, -

106.29915° and an elevational range of 1,576 m to 3,248 m (National Aeronautics and Space 

Administration (NASA), National Imagery and Mapping Agency (NIMA), German Aerospace 

Center (DLR), and Italian Space Agency (ASI) 2002). Mean annual temperature across the Area 

ranges between 4.4°C and 13.8°C and total mean annual precipitation ranges from 245 mm to 

497 mm per year (Karger et al. 2017b). Both temperature and precipitation follow an 

elevational gradient, with lower mean annual temperatures and higher annual precipitation 

occurring at higher elevations. Area 1 is the southernmost study Area and includes a portion of 
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the Cibola National Forest. According to the IDS data, the pinyon mortality was lower here than 

in the other three study Areas (USDA Forest Service, Forest Health Protection and its partners 

2014).  

Area 2 has an area of 4,112 km2, and a centroid of 35.41023°, -105.71264°. This Area 

includes a portion of the Santa Fe National Forest. Elevation in the Area ranges from 1,769 m to 

2,892 m (National Aeronautics and Space Administration (NASA), National Imagery and 

Mapping Agency (NIMA), German Aerospace Center (DLR), and Italian Space Agency (ASI) 

2002). Mean annual temperature across the Area ranges between 5.6°C and 12.3°C and annual 

precipitation ranges from 250 mm to 652 mm per year (Karger et al. 2017b). Mean annual 

temperature corresponds very closely to elevation in Area 2, with higher temperatures at lower 

elevations. Precipitation patterns generally follow elevation, with lower precipitation in lower 

elevation areas, however there are two small portions of Area 2 in the extreme east that 

appear to receive more annual precipitation than the rest of the Area.  

Area 3 has an area of 2,728 km2, and a centroid of 35.79419°, -106.308°. Elevation in 

this Area ranges from 1,570 m to 2, 985 m (National Aeronautics and Space Administration 

(NASA), National Imagery and Mapping Agency (NIMA), German Aerospace Center (DLR), and 

Italian Space Agency (ASI) 2002). Mean annual temperature across the Area ranges between 

5.6°C and 13.6°C and annual precipitation ranges between 220 mm and 497 mm per year 

(Karger et al. 2017b). Temperature and precipitation both track closely with elevation in this 

Area, with higher temperatures and lower precipitation occurring at the lower elevations. Area 

3 includes part of the Santa Fe National Forest that is geographically separate from the portion 
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contained in Area 2; a lowland area that is relatively devoid of woodlands separates the two 

parts of this National forest.  

Area 4 has an area of 4,202 km2, and a centroid of 36.40371°, -105.91053°. Elevation in 

the Area ranges from 1,719 m to 3,388 m (National Aeronautics and Space Administration 

(NASA), National Imagery and Mapping Agency (NIMA), German Aerospace Center (DLR), and 

Italian Space Agency (ASI) 2002). Mean annual temperature across the Area ranges between 

3.1°C and 11.6°C and annual precipitation ranges from 198 mm to 544 mm per year (Karger et 

al. 2017b). Both temperature and precipitation correspond fairly well with elevation in this 

Area, with the higher elevations receiving more annual precipitation and cooler temperatures, 

while the lower elevations are on the warm and dry end of the ranges reported here. Area 4 

includes parts of the Cibola National Forest. The IDS data used in site selection indicates that 

the pinyon mortality in this Area was the most extensive of the four study Areas (USDA Forest 

Service, Forest Health Protection and its partners 2014). 

As one might expect given the collective size of the study area, there exists a fair 

amount of variety in vegetation types, soils, geology, and topography. Major vegetation types 

within the four Areas include grassland, shrubland/shrub steppe, scrub, savanna, woodland, 

and forest, as well as some cropland. Woodland and forest types typical of the area are pinyon-

juniper woodland, juniper woodland and savanna, ponderosa pine woodland, limber-

bristlecone pine woodland, spruce-fir forest and woodland, aspen forest and woodland, pine-

oak forest and woodland, mixed-conifer forest and woodland, and riparian woodland and 

shrubland (Lowry et al. 2005). Soils in the area are diverse, derived from varying parent 

materials that include aeolian, alluvial, and glacial deposits as well as igneous, metamorphic, 



25 

and sedimentary rock types of varying minerology (Stoeser et al. 2005). Topography through 

the area is varied, but generally gets more rugged and mountainous from south to north and 

from lower to higher elevations. 

3.2 Overview of methods 

The ultimate goal of this thesis was to predict and explain pinyon mortality across the four 

Areas. As described in further detail below, this required integrating data on pinyon mortality 

locations and data on factors that may drive or impede pinyon mortality in spatial models. 

Pinyon mortality locations were obtained from remotely sensed imagery; geospatial layers 

representing explanatory factors were obtained from various public data gateways. All data had 

to be processed in a series of preparatory sub-tasks, however (Figure 4). In the subsections that 

follow, I address first all tasks associated with remote sensing imagery acquisition, processing, 

and mortality mapping; I then shift to the tasks associated with the collection and preparation 

of potential explanatory variables and the subsequent spatial modeling of mortality.  
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Figure 4. Flowchart of methods. 

3.3 Mapping pinyon mortality 

Generating a detailed map of pinyon mortality across the four Areas required four main steps: 

acquiring the imagery, preprocessing it in preparation for analysis, unmixing each pixel to 

determine the amount of tree cover present, and then comparing the pre-drought and post-
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drought tree cover to determine the locations and severity of mortality. Each of these steps is 

detailed below. 

3.3.1 Image acquisition 

I used Landsat 5 Thematic Mapper (TM) imagery, acquired from the U.S. Geological Survey 

(USGS) Global Visualization Viewer (GloVis) (U.S. Department of the Interior 2017), for mapping 

tree mortality in my study area, as it covers the relatively large study area consistently at a 

medium spatial resolution of 30 m for the entire study period (2000-2005). In order to 

maximize the spectral contrast between herbaceous and woody vegetation, I acquired pre- and 

post-drought, leaf-off, pre-monsoon-season imagery to coincide with the time when 

herbaceous vegetation is senescent and pinyon pine is photosynthetically active (Huang et al. 

2009). Exact anniversary dates could not be obtained due to unavailability of cloud-free 

imagery; however, dates as close together as possible were selected. Full coverage for all Areas 

required two Landsat 5 TM scenes for each time period, a north and a south scene, for a total 

of four images ( 

Table 1). 

Table 1. Imagery used in the analysis. 

Description Acquisition Date Path Row Sensor/source Pixel size 

Pre-drought, north March 14, 2000 33 35 Landsat 5 TM 30 m 

Pre-drought, south March 14, 2000 33 36 Landsat 5 TM 30 m 

Post-drought, north April 13, 2005 33 35 Landsat 5 TM 30 m 

Post drought, south April 13, 2005 33 36 Landsat 5 TM 30 m 

Leaf-on DOQQs Multiple – 2005 N/A N/A NM Statewide 
Orthophotography Project 

1 m 
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As reference data for conducting the accuracy assessment of the woody plant cover 

maps, I acquired 1 m spatial resolution Digital Orthophoto Quarter Quads (DOQQs) of the Areas 

for the year 2005. These DOQQs were derived from air photos collected as part of the NM 

Statewide Orthophotography Project, and were downloaded from New Mexico Resource 

Geographic Information System (Earth Data Analysis Center, University of New Mexico 2015). 

The DOQQs represent leaf-on imagery; however, due to the high spatial resolution, visual 

discrimination between woody and herbaceous vegetation was possible and so leaf-on imagery 

did not pose a problem. Where possible, I used color-infrared (CIR) imagery to help in 

distinguishing green vegetation from other look-alike materials; however, there were some 

areas where the CIR imagery was not available and in those cases I only used the natural-color 

(RGB) imagery. I did not obtain similar reference data for 2000 because none was available. The 

rationale for using only one year of reference data is discussed further in Section 3.3.3.5. 

3.3.2 Preprocessing 

The Landsat 5 TM Level 1 (L1TP) images were already geometrically corrected by the USGS prior 

to being made publicly available (Landsat collection 1 level 1 product definition. version 2.0. 

LSDS-1656 2019). I conducted radiometric corrections and scene-to-scene radiometric 

calibrations. This was necessary to convert the digital numbers in the original Landsat 5 TM 

imagery to percent surface reflectance, adjust for atmospheric and topographic effects, and 

make the multitemporal images comparable to one another (Schott, Salvaggio, and Volchok 

1988). 

Atmospheric and topographic corrections of all images were performed in ATCOR3 

(Richter n.d.; Richter and Center 2004). For the topographic correction, I used a Shuttle Radar 
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Topography Mission (SRTM) 1 Arc-Second Global Topographic Digital Elevation Model (DEM) 

(National Aeronautics and Space Administration (NASA), National Imagery and Mapping Agency 

(NIMA), German Aerospace Center (DLR), and Italian Space Agency (ASI) 2002). Settings used 

were: rugged terrain; atmospheric file: aausrura; visibility in km from a weather station in Santa 

Fe, NM, which is a fairly central location in the collective study area, on the day the imagery 

was collected.  

Following these corrections, I cross- calibrated the north and south images for each year 

and mosaics for the years 2000 and 2005 using the Empirical Line Calibration (ELC) tool in in 

Harris Geospatial Solutions’ Environment for Visualizing Images (ENVI). ELC is a commonly 

accepted method of normalizing remotely sensed imagery (Baugh and Groeneveld 2008; Ortiz 

et al. 2017). To calibrate the northern and southern scene to each other for each imagery year, I 

used three bright and three dark pseudo-invariant features (PIFs), or pixels (Schott, Salvaggio, 

and Volchok 1988). R-squared (r2) values for the plotted regression lines for all bands in these 

calibrations were 0.990 or higher. For the imagery from 2000, the southern scene was of a 

slightly higher quality than the northern scene, and so I used the southern scene as the 

reference image in the calibration; for 2005, I used the northern scene as the reference image, 

as it covers a larger part of the study area. After each set of north and south scenes were 

calibrated to each other for that imagery year, I mosaicked them together and performed one 

final calibration to adjust the 2000 final image to the 2005 final image. For this I used five bright 

and five dark PIFs (Schott, Salvaggio, and Volchok 1988). R2 values for the plotted regression 

lines for all bands were 0.983 or above for this calibration. 
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Following the radiometric corrections and calibrations, I masked out urban and built-up 

areas as well as agricultural land. Retaining these land cover types would have added no value 

to this analysis of woody plant cover change and would have increased the computational 

demand and possibility of class confusion during the image classification process. Image 

processing for this step was done in ArcGIS Desktop 10.5 (Environmental Systems Research 

Institute, Redlands, CA). Subsequent image processing and analyses were done on either ENVI 

or ArcGIS Desktop, depending on which was more suitable for the task at hand. 

To identify major urban areas for masking, I used the New Mexico, 2010 Census Place 

shapefile, published by the U.S. Department of Commerce, U.S. Census Bureau, Geography 

Division (U.S. Department of Commerce, U.S. Census Bureau, Geography Division 2011). Due to 

the fact that the Census Place shapefile represents a later date than my imagery, there are 

some areas identified as urban that were in fact not yet built-up at the collection time of my 

imagery; however, these were mainly in non-forested areas and so masking them out did not 

negatively affect my analysis. I then used the U.S. Census Bureau, Geography Division, 

Topologically Integrated Geographic Encoding and Referencing (TIGER) primary and secondary 

roads file for New Mexico to identify main roads within my study area. While the width of most 

roads on the ground is generally less than 60 m (New Mexico Department of Transportation 

2016), reflectance effects of roads in the Landsat imagery generally show up for about one to 

two pixels on either side of the centerline. To capture most of these effects and mask out roads 

from the imagery, I thus used a 30 m buffer around roads.  

To identify agricultural areas for removal, I began by excluding areas of land 

immediately adjacent to sources of surface water irrigation, where a large portion of the 
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visually observable agricultural fields were located. To this end, I used the National 

Hydrography Dataset (NHD) (U.S. Department of the Interior, U.S. Geological Survey 2001) to 

select features identified as streams, rivers, canals, ditches, and aqueducts. To minimize the 

exclusion of non-agricultural areas that might be of interest to my analysis, I removed from the 

initial set of selected features any that were in forested areas that did not appear from visual 

inspection to be in close proximity to agriculture. Around the rest, I generated a 1 km buffer. 

The optimal size for the buffer was determined by measuring the distance from the NHD line 

feature to the edge of agricultural fields in several places throughout the study area. While 

most fields could have been captured by a 600-800 m buffer, some fields extended further than 

this; to be as inclusive as possible, while avoiding excessive exclusion of non-agricultural areas, I 

thus used a 1 km buffer. I also hand-digitized several polygons to exclude areas where center-

pivot irrigated fields were visually apparent.  

None of the above-described methods for identifying urban and agricultural areas are 

perfect and thus I acknowledge that even after these steps some scattered built-up and 

agricultural areas likely still exist within the masked imagery; however, they are relatively small 

in extent and add only a small amount of “noise” or unmodeled pixels to the results. 

3.3.3 Multiple Endmember Spectral Mixture Analysis (MESMA) 

Multiple Endmember Spectral Mixture Analysis (MESMA) (Roberts et al. 1998) is a remote-

sensing technique for unmixing pixels in an image based on the expected materials within the 

scene. Pure examples of these expected materials, called endmembers, are input by the 

operator before running the model. I used MESMA to determine the abundance of green 

vegetation (GV) per pixel throughout each year’s imagery. GV can be interpreted as woody 
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vegetation (e.g., pinyon pine or juniper) in this case because, as noted above, the satellite 

images capture the dry season when herbaceous species are senescent (Huang et al. 2009). 

MESMA is an effective technique for mapping land cover fractions in a variety of natural and 

urban settings (Roth, Dennison, and Roberts 2012). Applying MESMA involves the selection of 

appropriate endmembers and model parameters, discussed below. All processing was done in 

ENVI with help of the Visualization and Image Processing for Environmental Research (VIPER) 

Tools 2.0 (Halligan, Crabbé, and Leuven 2014), an open-source extension for ENVI. I also 

conducted an accuracy assessment on the results of the MESMA modeling for GV abundance. I 

did not assess the accuracy of other types of materials identified in the scene through MESMA, 

as those outputs were incidental and not of interest in this study. 

3.3.3.1 Endmember collection 

The endmembers used to unmix the satellite images came from four sources: internal spectral 

libraries available in ENVI, endmembers collected and compiled by Brewer et al. (2017) for their 

own study, soil endmembers collected with a handheld field spectroradiometer from soil 

samples taken from within the study area during a site-visit, and endmembers extracted from 

the preprocessed 2005 Landsat 5 TM imagery. 

Included with the standard ENVI installation are several groups of laboratory spectra 

from the NASA Jet Propulsion Laboratory (JPL), Johns Hopkins University (JHU), and the USGS. 

There are thousands of spectra in these libraries that cover a wide range of materials. I selected 

all those that were identified as some form of vegetation (either green or non-photosynthetic) 

(n=199), rocks (n=396), soil (n=49), and ice or snow (n=15), excluding those that represented 

mixtures of these materials such as rangeland. The endmembers supplied by Brewer et al 
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(2017) were collected from a location approximately 26 km south of the southernmost tip of 

my Area 1, and included spectra from both live and dead pinyon (live n=232, dead n=231) and 

juniper (live n=124, dead n= 9), herbaceous cover (n=30), and bare ground (n=12). I also 

collected 12 soil samples from points within the general study area, brought them back to the 

New Mexico State University campus, and obtained five spectral readings per sample under full 

sunlight with an Analytical Spectral Devices FieldSpec Pro JR field spectroradiometer, which has 

a spectral range of 350-2500 nm. 

Endmembers extracted from the 2005 satellite imagery, after discarding “bad” pixels 

(explained below), consisted of GV (n=15), non-photosynthetic vegetation (NPV) (n=1), bare soil 

(S) (n=6), and snow (O) (n=19). I extracted spectral profiles directly from the imagery of my 

study area using three techniques: the Sequential Maximum Angle Convex Cone (SMACC) 

method (Gruninger, Ratkowski, and Hoke 2004), the Pixel Purity Index (PPI) method (Boardman, 

Kruse, and Green 1995), and a-priori identification of a few pure pixels based on reference 

imagery. Both the PPI and SMACC methods of extracting pixels from the imagery yielded a large 

proportion of impure or heavily shaded pixels, as determined by examining 1 m spatial 

resolution DOQQs at the location of each of the pixels. The potential for these methods to 

select pixels that are not true endmembers has been noted as a shortcoming elsewhere (e.g., 

Chang and Plaza 2006). The impure pixels, along with any pixels corresponding to excluded land 

cover types, such as water or anthropogenic features, were not used as endmembers. In the 

course of examining these pixels, a few pure pixels were identified through convenience – 

having a close proximity to a PPI or SMACC flagged pixel; these were selected a-priori and their 

profiles added to the spectral library. 
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3.3.3.2 Endmember preprocessing 

After compiling the pool of endmembers from the variety of sources described, they required 

some preprocessing to make them usable. First, I spectrally resampled (to the six Landsat 5 TM 

reflectance bands) and rescaled (to at-surface reflectance x 10,000) all reference endmembers 

to match those of the preprocessed Landsat 5 TM bands. I then manually inspected all spectra 

and discarded any for which one of the following was true: appeared to be incongruent with 

their description (e.g., identified as dry oak leaf but having a spectral profile more characteristic 

of photosynthetic green vegetation); represented, according to the description, vegetation in 

transition from photosynthetic to senescent, such as yellowing leaves; or were highly unlikely to 

be found within the scene, such as spectra from ornamental flowers. I then assigned all 

remaining endmembers to one of the following five classes: GV (photosynthetic green 

vegetation), NPV (non-photosynthetic dead or senescent vegetation), R (rocks), S (bare soil), 

and O (“other” - snow and natural salt-flats, which have a similar spectral reflectance). The 

spectral library at this point consisted of 1,342 endmembers: 458 GV, 335 NPV, 122 S, 396 R, 

and 31 O. 

3.3.3.3 Endmember selection 

To increase computational processing efficiency, it is desirable to avoid using more 

endmembers than needed; however, this must also be balanced with the need to adequately 

capture endmember variability (Roth, Dennison, and Roberts 2012). In order to narrow down 

the initial selection of endmembers, I employed several methods. On the ENVI-derived set of 

endmembers, I used Iterative Endmember Selection (IES), an automated process that iteratively 

selects endmembers based on maximizing the overall Cohen’s kappa value (Cohen 1960) 
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obtained in classifying the training library (Roth, Dennison, and Roberts 2012; Tane et al. 2018). 

Because there was no compelling reason to think that any one of these endmembers should 

perform better than others on my imagery, IES was a convenient way to reduce the total 

number of endmembers to be used in the analysis. For the other reference endmembers, I used 

a different approach in order to force inclusion of endmembers that I believed would 

correspond well to the materials found in the scene. For these I first discarded any 

endmembers that appeared to be redundant based on a visual inspection of their spectral 

profiles. I also discarded any endmembers which appeared from visual inspection of the 

spectral signatures to be composed of a mixture of GV, S, and/or NPV. I then calculated a 

square array in VIPER for the remaining endmembers and used the Endmember Average Root 

Mean Squared Error (EAR) values, an indicator of how well an endmember models the other 

endmembers of its own spectral class (Dennison and Roberts 2003), to select the twenty most 

representative profiles for each target material, and discarded the rest. Regarding the 

endmembers derived from the imagery, they were quite few in number and thus I did not 

subject them to any endmember-reducing techniques beyond the initial quality control step of 

discarding impure and non-target materials. The set of endmembers combined from all sources 

resulted in a spectral library of 387 endmembers: 92 GV, 137 NPV, 93 R, 36 S, and 29 O. 

As a final step, I ran 2- and 3- endmember MESMA on the 2005 imagery from each Area 

to identify and subsequently remove endmembers that model only negligible proportions of 

pixels. This was necessary to facilitate the final 4-endmember run on each image because each 

additional endmember exponentially increases the number of models used in the MESMA 

process, which adds substantially to the computational requirement. The MESMA settings were 
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as follows: allowable endmember fraction ranging from -0.05 to 1.05, maximum allowable 

shade fraction of 80%, and a maximum allowable root mean squared error (RMSE) of 0.025. 

Constraining the allowable endmember fraction to values between -0.05 to 1.05 ensured that 

overly physically impossible fraction abundances were not generated; this setting and the 

shade and RMSE criteria are generally in line with those used in other published studies (e.g., 

Brewer et al. 2017; Tane et al. 2018). Using the results of this preliminary run, I created a 

unique endmember library for each Area consisting of the endmembers which modeled at least 

between 0.08% (R, most stringent) and 0.02% (GV, most inclusive) of the pixels in the scene. 

Actual cutoff values varied slightly between Areas depending on which of several test runs 

yielded the highest accuracy results for that particular Area. The final spectral libraries 

consisted of 159-186 endmembers per Area (Table 2). 

 

Table 2. Final endmembers used for the 2-, 3-, and 4-endmember run in each Area. 

Endmember type Area 1 Area 2 Area 3 Area 4 

GV 50 56 54 49 

NPV 62 49 50 44 

R 34 30 47 29 

S 23 31 26 27 

O 6 1 9 10 

Total 175 167 186 159 

 

3.3.3.4 Spectral unmixing 

I used the final set of endmembers selected for each Area to run 2-, 3-, and 4-endmember 

MESMA on both years of imagery, with the same settings as described above for the 2- and 3-

endmember run. This meant that each pixel was modeled with a minimum of one endmember 
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plus shade, which is always included as a default, and with a maximum of three endmembers, 

each from a different class, plus shade. While there are options to include a higher possible 

number of endmembers, three seemed an adequate number of non-shade endmembers to 

capture the materials represented in each 30 m pixel, given the general nature of the scene and 

that some land cover classes had already been masked out. All MESMA raw outputs were 

shade-normalized before proceeding with the accuracy assessment and subsequent analyses. 

3.3.3.5 Accuracy assessment 

I conducted an accuracy assessment of the MESMA modeling outputs of the 2005 imagery for 

each of the four Areas. I used the 2005 1 m DOQQs described above to serve as reference data. 

In each Area, I laid out 30 plots of 90 x 90 m in a stratified random sampling plan, with 10 plots 

each in areas of uniformly high, uniformly medium, and uniformly low woody vegetation cover 

(Figure 5). These cover categories were decided subjectively by visual estimate; the relative 

homogeneity / consistency criterion was included to avoid having excessive in-plot variability in 

woody plant cover. The plot size was chosen to represent an area of 3 x 3 Landsat 5 TM pixels, 

to account for slight registration differences between plot edges and pixel edges (Brewer et al. 

2017). To make the two data sources more comparable, I applied a 3x3 kernel low pass filter, 

which averages the pixels within the specified kernel, to the 30 m MESMA output. 
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Figure 5. From left to right, examples of (A) low, (B) medium, and (C) high cover plots. 

I used a photography-based grid point intercept method to quantitively assess plot 

cover from the 1 m DOQQs. In each plot, I located 150 points in evenly spaced transects 

distributed across the plot (Figure 6). At each point, the reference imagery was inspected and 

cover type (GV, non-GV) was recorded. Others have relied on a similar technique for accuracy 

assessments of image analysis results (Karl, Duniway, and Schrader 2012; Brewer et al. 2017; 

Lippitt et al. 2018). Because very few natural landscapes, even across relatively small distances, 

are truly homogenous, I randomly selected 50 points from each plot as test points and 100 as 

training points. I assessed the percent cover difference between training and test data as a 

measure of within-plot heterogeneity and used this to inform my interpretation of the results 

obtained from the MESMA accuracy assessment. This was an approach similar to the method 

used by Duniway et al. (2012) for calibrating vegetation classification in aerial imagery. 
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Figure 6. Accuracy assessment plot transects. 

I used three measures to assess the overall error between the cover percentages 

obtained from the DOQQs and the GV abundance estimated by MESMA: RMSE, mean average 

error (MAE), and coefficient of determination (R2). RMSE is the standard deviation of the 

residuals and provides a measure of how closely the data points fall along the line of best fit, 

MAE provides the average of the absolute errors, and R2 indicates how well the regression line 

fits the data. I calculated these three measures of error for the comparison of within-plot 

heterogeneity also. 

I did not conduct a separate accuracy assessment for the 2000 imagery. First, high 

spatial resolution aerial photography for the study area taken in or around 2000 was not 

available. Second, Schott, Salvaggio, and Volchok (1988) report that performing ELC can reduce 

temporally induced differences between multitemporal imagery to an error of ~1%; therefore, 

after having conducted an ELC, the 2000 imagery should be highly comparable to the 2005 

imagery in terms of reflectance values. Since the same spectral library and model parameters 
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were used for both years of imagery, and as MESMA is a physical model, I proceeded on the 

assumption that the accuracy assessment performed on the 2005 imagery MESMA output is 

generalizable to the 2000 imagery MESMA output. 

3.4 Image differencing 

I used image differencing to detect the change in GV cover between the two years. For each 

Area, I eliminated from both image layers all pixels which met the following criteria: less than 

5% GV cover in 2000 and/or snow present in one or both years of imagery. This was to 

eliminate from the analysis pixels with few to no trees and to avoid errors introduced by snow 

obscuring the true GV cover in a pixel. I then aggregated the GV layers from a 30 m pixel 

resolution to a 210 m pixel resolution using the mean of the underlying pixels. This pixel size 

corresponds well with the average spatial resolution of the soils variables, which were derived 

from the coarsest resolution input dataset except for the bioclimatic variables. Due to the 

aggregation method used, selecting a more rounded number of 200 m was not an option, as 

the aggregated pixel size needed to be a multiple of the initial 30 m pixel resolution. While 

bioclimatic variables could be interpolated to partially remedy the spatial resolution mismatch, 

no such option was available for the nominal data type soils information. I used the land cover 

data layer from the SWReGAP analysis program (RS/GIS Laboratory, College of Natural 

Resources, Utah State University 2004; Lowry et al. 2005) to isolate only areas mapped by the 

project as pinyon-juniper woodland within the four Areas. The native resolution of this land 

cover dataset is 30 m. In using it to mask out non-target pixels in the GV cover images, I 

followed this rule: if at least one of the land cover pixels mapped as pinyon-juniper woodland 
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overlapped a cell in the GV cover image, then that GV cover pixel was retained. After masking 

both images to exclude areas with no pinyon-juniper woodland, I performed image differencing 

using two strategies. First, I subtracted the GV values in 2000 from the GV values in 2005 to 

detect the absolute percentage point difference in GV cover between 2000 and 2005. Second, I 

calculated the relative change in cover between 2000 and 2005, using the formula (GV 2005 – 

GV 2000) / GV 2000, where GV 2000 and GV 2005 represent the percent GV cover in the years 

2000 and 2005, respectively. I used the relative change layer to determine presence of 

mortality, described further in Section 3.5.1. 

3.5 Selection of tree mortality presence and absence locations  

The modeling methods I selected require a binary outcome response variable - in this case, the 

presence or absence of mortality. To minimize spatial autocorrelation and create an unbiased 

tree mortality presence and absence point dataset for the spatial models, I drew a stratified 

random sample of mortality presence and absence points from various pre-drought GV cover 

categories for each Area, with each point spaced a minimum distance of minimum distance of 

1,050 m (five pixels) away from the next nearest point. This process required three steps: 

determining what constituted presence or absence of mortality; determining representative 

pre-drought GV cover classes; and actually creating the sample. To determine what qualified as 

mortality having occurred, I used a combination of exploratory data assessment to evaluate 

natural breaks, and judgement for what seemed reasonable. I determined the GV cover classes 

similarly, relying mainly on the natural breaks in the data for determining these classes. This 

was done to make sure that the sample set I planned to draw was unbiased. I decided to 
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evaluate the cover densities found in each Area and design the sample stratification in such a 

way that the sample drawn would be reflective of the cover density in the Area, while at the 

same time ensuring that there were data points representative of mortality in all classes of pre-

drought cover density. 

3.5.1 Determination of tree mortality presence and absence 

I determined class breaks for percent cover loss between 2000 and 2005 for each Area by 

applying a Jenks Natural Breaks classification to the MESMA-derived GV data. Based on the 

natural breaks in the data, which were fairly similar across the four Areas, I generalized the 

breaks for all Areas into the following five mortality classes: 

• very low: 0.05 to 15 percent cover loss (-0.05 to -15) 

• low: 15 to 30 percent cover loss (-15 to -30) 

• medium: 30 to 45 percent cover loss (-30 to -45) 

• high: 45 to 60 percent cover loss (-45 to -60) 

• very high: 60 to 100 percent cover loss (-60 to -100) 

I chose the high and very high percent cover loss categories collectively to represent 

mortality presence pixels for modeling. Any pixels with less than 45% cover loss between 2000 

and 2005 were excluded to capture only the areas with the highest mortality and reduce the 

possibility of modeling noise introduced by incidental mortality or minor GV percent estimate 

inaccuracies. Pixels with 0% change or a positive percent change were used to represent areas 

of tree survival or mortality absence.  
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3.5.2 Determination of pre-drought woody plant cover classes 

Using Jenks Natural Breaks, I divided the pre-drought year 2000 imagery GV percent into five 

cover classes for each individual Area and then generalized the breaks across the four Areas to 

come up with the following 2000 GV classes: 

• very low (1): 0 to 10 percent cover 

• low (2): 10 to 25 percent cover 

• medium (3): 25 to 45 percent cover 

• high (4): 45 to 65 percent cover 

• very high (5): 65 to 100 percent cover 

As with mortality, the breaks for the four Areas were quite similar even before 

generalizing. I excluded the very low cover category from the sampling scheme because very 

few mortality presence points occurred in this cover class across any of the four sites, and it 

was impossible to represent this cover class and still draw a reasonable number of sample 

points.  

3.5.3 Sampling of tree mortality presence and absence sites 

I selected 500 total sample points each in Areas 2, 3, and 4, and 250 points in Area 1 (Table 3). 

Half of these points in each Area were located at sites with mortality present, and half were 

located at sites that represented survival (absence of mortality); this ensured that the dataset 

used for creating the models was balanced with regard to mortality presence/absence. Overall 

mortality was lower in Area 1 than in the other Areas, and there were not enough mortality 

presence points to draw 500 points from this Area. In Area 3 and Area 4, the high and very high 

cover classes were somewhat underrepresented in the survival sample drawn, as there were 

not enough points to draw from in those classes. This necessitated oversampling the low and 

medium cover classes to make up the full number of needed survival points. 
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Despite great care taken to ensure that no areas with missing data from the variables 

layers were selected as sample locations, when processing the final analysis datasets, a very 

small number of data points were found to contain missing data values, and these samples 

were discarded before proceeding. Due to the very small number of points for which this was 

the case, the effect on the subsequent analyses was negligible.  

Table 3. Mortality presence and absence sample points in each pre-drought GV cover category and overall for each 
of the four Areas.  

 Number of sample points 

 Area 1 Area 2 Area 3 Area 4 

Mortality presence     

Low pre-drought GV cover 46 118 101 90 

Medium pre-drought GV cover 31 75 91 74 

High pre-drought GV cover 27 38 34 43 

Very high pre-drought GV cover 21 19 24 43 

Total mortality presence points 125 250 250 250 

Mortality absence     

Low pre-drought GV cover 46 118 122 124 

Medium pre-drought GV cover 31 75 113 90 

High pre-drought GV cover 27 38 7 14 

Very high pre-drought GV 
cover 

21 19 8 22 

Total mortality absence points 125 250 250 250 

Total sample points 250 500 500 500 

 

3.6 Potential explanatory variables 

The data for the potentially explanatory variables was obtained from a variety of sources, and 

required varying degrees of preprocessing in preparation for the modeling phase. The general 

steps were: acquisition of the data, preprocessing associated with the initial data preparation, 
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and then statistical preprocessing to standardize values and inspect for correlation and 

collinearity. 

3.6.1 Acquisition of potential explanatory data layers 

I acquired data for variables that might explain tree mortality in five general categories: 

bioclimatic, topographic, edaphic, vegetation, and anthropogenic. The data for these came 

from seven main sources. For the climatic variables, I used the Climatologies at High resolution 

for the Earth’s Land Surface Areas (CHELSA) datasets (Karger et al. 2017b). These represent 

long-term averages spanning the period 1979-2013 (Karger et al. 2017a). The topographic 

variables as well as solar radiation variables were derived from the SRTM DEM that I also used 

for the topographic correction of the satellite imagery, described above (National Aeronautics 

and Space Administration (NASA), National Imagery and Mapping Agency (NIMA), German 

Aerospace Center (DLR), and Italian Space Agency (ASI) 2002). Edaphic data were sourced from 

the USFS and the Natural Resources Conservation Service (NRCS) Soil Survey Geographic 

(SSURGO) database. Vegetation indices were calculated from the preprocessed Landsat 5 TM 

imagery. Grazing allotment data were obtained from the USFS, the Bureau of Land 

Management (BLM), and the New Mexico State Land Office (SLO) to represent the 

anthropogenic variables. 

Most of the above datasets were consumer-ready products requiring minimal additional 

processing; the exception to this was the USFS soils data. I hand-tabulated these data from 

Adobe Portable Document Format (PDF) documents of scanned field log sheets provided by the 

USFS Southwestern Region office, where available. In areas where detailed USFS soil data were 
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not available, I used SSURGO information instead. A full listing of all variables considered, 

including sources and native resolutions, is included in Appendix A. 

3.6.2 Preprocessing of potential explanatory data layers 

The preparation needed for each group of variables varied somewhat and depended largely on 

the source and state of the data. As one might expect, the data came in a variety of native 

spatial resolutions and formats. To ensure a consistent resolution across all datasets, I 

converted all shapefiles to raster format with a 210 m pixel size, using the Maximum Combined 

Area cell assignment option. All nominal type variables I dummy-coded into rasters with values 

of 1 for presence and 0 for absence of the feature of interest. The processing of raster-based 

datasets are detailed below in their respective subsections. During this initial preparation, I also 

excluded from further processing and analysis any features that, based on visual estimation, 

covered a very small area relative to the collective study area and/or had a very localized extent 

(e.g., one medium-sized polygon within the entire collective study area), as it appeared unlikely 

their inclusion would enhance the final analysis. This was the case for several of the soils 

variables in particular, as there were a few textural and drainage classes that were only found 

in a few, very small, isolated locations within the collective study area. 

To avoid registration issues and pixel edge mismatches, all rasters produced in the data 

preprocessing tasks were snapped to the image differencing raster that represents percent 

change in GV between the two years. I also clipped and masked all rasters representing 

independent variables to have the same coverage as the image-differencing raster. Any pixels 

where one or more of the variables had no data were also excluded, so that no partial data 

areas would be included within the final layerstack of potential explanatory variables. 
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3.6.2.1 Bioclimatic variables 

I downloaded long-term climatic averages from the CHELSA datasets, clipped them to the New 

Mexico state boundary, re-projected and resampled them to a 210 m pixel size using bilinear 

interpolation, and then clipped them that to the boundaries of the four study Areas. I also 

calculated solar radiation in ArcGIS using a sky size of 200 cells and the 30 m SRTM DEM as 

input data. Since the initial output of this operation had a 30 m pixel size, I aggregated the 

values to a 210 m pixel size using the average of the underlying pixels. 

My reason for including long term climatic trends in these analyses was to assess the 

possible relationship of tree mortality to long-term environmental characteristics such as, for 

example, sites that typically receive low precipitation even in normal years. Some literature 

(Lloret and Kitzberger 2018) also suggests that historically more favorable sites may have had 

higher mortality during the 2000s drought. To investigate these relationships, I thus chose to 

include long-term climatic variables. I did not include weather variables for the drought period 

because a primary goal of this study is to evaluate the relationship between drought-related 

pinyon mortality and relatively stable site characteristics, which might be informative for 

management purposes. The effects of weather-related variables, such as precipitation (West et 

al. 2008; Plaut et al. 2012; Anderegg and Anderegg 2013; Limousin et al. 2013; Williams et al. 

2013), temperature (Adams et al. 2009), and vapor-pressure deficit (Plaut et al. 2012; Weiss, 

Betancourt, and Overpeck 2012; Limousin et al. 2013; Williams et al. 2013; Dickman et al. 2015) 

on pinyon pine have already been studied and are described in the relevant literature.  
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3.6.2.2 Topographic variables 

For elevation data, I used the 30 m SRTM DEM, aggregated to a 210 m pixel size using the mean 

of the underlying pixels. All other topographic variables were calculated in ArcGIS from this 

DEM with the help of the Geomorphometry and Gradient Metrics (version 2.0) toolbox (Evans, 

Oakleaf, and Cushman 2014).  

3.6.2.3 Edaphic variables 

Both the USFS and NRCS soils data came in polygon form, with each polygon representing a 

map unit composed of several distinct soils (components), each with their own unique 

characteristics. My first step in processing these datasets was to identify the dominant 

component for each soil map unit, which is the component that makes up the highest 

percentage of the map unit. This information is supplied within these datasets. For highly 

heterogenous map units in which the “dominant” component makes up only a small 

percentage of the unit (e.g., 35%) I selected the component which best represents the general 

characteristics of one or more other components described in the unit, so that the highest 

possible percentage of the soils within the unit was reasonably represented. After identifying 

the dominant component for each unit, I used the soil attributes associated with this 

component for the entire polygon area from that point forward. USFS data were used where 

available; in areas where I did not have USFS data, I used NRCS data instead. 

USFS data 

In areas under USFS jurisdiction, Terrestrial Ecosystem Unit shapefiles are available which, 

similar to NRCS soil shapefiles described below, depict polygons composed of one or more 

components. Some supplemental information is also provided with these, but the level of detail 
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needed for this study was not present in the publicly available datasets. Through a contact at 

the Southwestern Region office, I obtained the actual field log sheets that had been used in 

mapping these soils. From these, I tabulated the soil profile information into an Excel 

spreadsheet and processed it similarly to the NRCS sourced data as outlined below. Most of the 

soil profiles from this dataset were described to a depth of about 110 cm, some slightly less and 

some a little more. In order to round the profile depth to a standard value across all the data, I 

truncated all profile data at 122 cm. In practice, many soil interpretations in the U.S. are based 

on English units of inches and feet; 122 cm corresponds to 4 ft, which I could then evenly divide 

into 1 ft increments for later modeling and analysis. If the soil profile description did not go that 

deep, I made the assumption that the last described horizon extended to this depth with little 

to no change, unless a lithic contact or indurated material was noted as the last layer. 

NRCS data 

Part of the NRCS data download for a soil survey area is a Microsoft ACCESS® database that 

contains detailed soil properties in tabular form, as well as the capability to generate a variety 

of different written reports. Within each database, I created custom queries to extract the basic 

information needed for the desired variables. Some of these, such as drainage class, could be 

used as-is. A few properties, such as percent clay content and AWC of the entire soil profile and 

on a per-foot basis, had to be calculated. This is because the information in the database is on a 

horizon by horizon basis and horizons vary in thickness; in addition, water-holding capacity is 

reported on a basis of unit of water holding capacity per unit of soil, while I wanted actual 

summed totals. This is also sometimes referred to in agronomy as available water supply (USDA 

Natural Resources Conservation Service 2017), however here I refer to it as available water 
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capacity because supply implies the water is physically present, whereas in many arid western 

rangelands and woodlands that is not actually the case. Because there were so many map units 

to perform these calculations for, I wrote a series of python scripts to do the calculations that 

took, as input, data that I could query from the ACCESS® database and export into a csv file. The 

python scripts are included in Appendix B. Other soil property variables that needed further 

preparation beyond what was provided in the soil survey database included surface texture, 

particle size class, soil depth, calcic parent material, and presence of a restrictive layer within 

the described profile / presence of a clay layer within the described profile. Each of these is 

described next. 

Surface texture. Within the databases, the recorded surface texture includes modifiers 

such as “gravelly”, “very cobbly”, “stony”, etc. While these modifiers are informative for many 

purposes, my reason for including surface texture was based on the potential for a coarse 

surface texture to facilitate infiltration and reduce surface evaporation (Noy-Meir 1973); thus, 

including the amount or type of rock content just created an unnecessarily large number of 

highly specific classes with small extent, from which few relationships could be drawn. To 

simplify the categories, I removed all texture modifiers and aggregated the areas on the base 

textural class, so that, for example, a sandy loam, a fine sandy loam, and a very gravelly sandy 

loam were all placed in the same category. Soils with an O horizon of any designation were 

aggregated together and categorized as having an organic surface “texture”. I also created a 

bedrock “surface texture” category which serves to represent map units where the dominant 

component was described as rock outcrops or badlands with bedrock at the surface. 
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To further aggregate mineral horizon surface textures, I additionally created a second 

surface texture variable class which even further aggregated the textures into five classes: 

coarse, moderately coarse, moderate, moderately fine, and fine. These categories represent 

functional surface texture types and have been previously used in the classification of land for 

agricultural use for legally determining practicably irrigable acreage. Since these textural groups 

are not part of the NRCS land classification system or standard descriptive attributes, I assigned 

these by hand based on the reported soil texture of the surface horizon. 

Particle size class. This could mostly be used as provided; however, practice standards 

direct that no particle size class is used for psamments since it would be redundant 

information; this taxon designation already implies a sandy particle size (Soil Survey Staff, Soil 

Conservation Service, US Department of Agriculture 1999). For my analysis, however, I needed 

the particle size class to be specified in all units, so I entered this information manually into my 

tables. 

Soil depth. I used the reported depth to a root restrictive layer described as cemented, 

indurated, or bedrock, as the source for my variable “soil depth”. In profiles where no root 

restrictive layer was noted within the described profile, the depth to which individual profiles 

were described varied somewhat. The National Soil Survey Handbook (USDA Natural Resources 

Conservation Service 2017) recommends describing soils to a depth of no more than 200 cm 

but at least 150 cm; in practice most of the soils in the databases I downloaded are described to 

a depth of 152 cm. A few were described to greater depths. For consistency, any soils that were 

described below this depth I truncated at 152 cm, recognizing as a shortcoming that many of 

these areas may in reality have a depth of soil that extends far beyond the described or 
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truncated depth. In Areas 2 and 3, I truncated soil depth at 122 cm in order for the data to be 

comparable to the USFS data in which soil profiles were typically described to a shallower depth 

than the NRCS ones. 

Calcic parent material. This is not a feature of its own in the NRCS soil databases, but 

there is a general category for parent material to be recorded, so I simply queried out all map 

units where the dominant component parent material was recorded as limestone. My reasons 

for not including other types of parent materials are twofold. First, I wanted to capture soil 

material with a generally very high calcium carbonate content, which can influence soil physical 

properties such as water availability (Soil survey investigations for irrigation. FAO soils bulletin 

42. n.d.) and nutrient availability (USDA Natural Resources Conservation Service 2017). 

Secondly, many of the components had more than one type of parent material specified (e.g., 

alluvium and eolian) and I was unable to develop a good way to represent each of them as 

discrete categories. 

Presence of a restrictive layer within the described profile; presence of a clay layer within 

the described profile. Neither of these are data fields in the NRCS soils database, but were easy 

enough to assemble based on the information given on horizon textures and depth to root 

restrictive feature. In determining these two variables, I included soils with a restrictive layer or 

clay layer described at any depth below the soil surface. 

3.6.2.4 Vegetation indices 

I calculated two pre-drought vegetation indices – the Normalized Difference Vegetation Index 

(NDVI) and the Normalized Difference Moisture Index (NDMI) – to determine if there was a 

relationship between pre-drought vegetation conditions and pinyon mortality. Both indices 
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were calculated from the fully preprocessed 2000 Landsat 5 TM image. I then aggregated the 

native 30 m pixel size outputs to a 210 m pixel size using the average of the underlying pixels. 

The NDVI (Rouse Jr et al. 1974) is a widely recognized vegetation index (Ji et al. 2011) 

which is used to quantify photosynthetic green vegetation (U.S. Department of the Interior, 

United States Geological Survey n.d.; Rouse Jr et al. 1974). The NDMI is an index that has been 

shown to be correlated to vegetation water content (Hardisky, Klemas, and Smart 1983; Hunt Jr 

and Rock 1989). The equations for the indices are as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

where NIR is the near infrared band (band 4) and Red is the red band (band 3), and 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

where NIR is the near infrared band and (band 4) and SWIR is the short-wave infrared 

band (band 5). 

3.6.2.5 Anthropogenic variables 

Although I initially considered land ownership as a potential explanatory variable, upon 

inspecting the spatial locations and distributions and of various ownerships (e.g., tribal, Forest 

Service, State), I determined that land ownership was unlikely to explain pinyon survival or 

mortality. Instead, I chose whether or not land was grazed as the only anthropogenic variable in 

the analysis to determine if there is a relationship between livestock grazing (e.g., differences 

such as the presence of hoof action, suppression or removal of some of the understory) and 

drought-induced tree mortality. To identify grazing lands, I used shapefiles depicting grazing 

allotments obtained from the BLM representing conditions in 2000 (Bureau of Land 
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Management - New Mexico State Office 2000), USFS grazing allotment shapefiles with 

publication dates between 2010-2013 (USDA Forest Service 2010; USDA Forest Service, Carson 

National Forest 2012; USDA Forest Service, Santa Fe National Forests 2013), and a shapefile of 

agricultural land leases representing current conditions at the time of download in 2017 from 

the NM SLO (Land Office Geographic Information Center (LOGIC), NM State Land Office n.d.). 

Although some of the data publication dates are more recent than the mortality event, I 

proceeded on the assumption that it is unlikely grazing allotment boundaries changed 

substantially in the years between 2002 and the data publication date. From the SLO 

agricultural land leases shapefile, I isolated those that were coded as a grazing type land use 

(ATYP_CDES = G or 1), and then combined the polygon shapefiles depicting grazing lands from 

all three sources into a single shapefile, from which I then created a dummy-coded raster 

indicating presence or absence of grazed land.  

3.6.3 Statistical preprocessing of variables 

Prior to analysis, I standardized all variables using the scale function in R, which applies the 

formula (x-x̄)/s, where x=value, x̄ =sample mean, and s=sample standard deviation, to make 

them comparable, as their native scales are widely variable. I also noted that many of the 

variables were extremely non-normally distributed; however, this did not present a problem as 

none of the modeling approaches I used -logistic regression, random forest, conditional 

inference trees- require predictor variables to be normally distributed (Peng, Lee, and Ingersoll 

2002; Pohar, Blas, and Turk 2004; Hothorn, Hornik, and Zeileis 2015).  

Correlation and collinearity between variables were analyzed using Pearson’s r and the 

Variance Inflation Factor (VIF), respectively (Appendix C). Variables with Pearson’s values of -0.7 
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≤ r ≥ 0.7 were considered strongly correlated and hence redundant. To determine which of two 

correlated variables to keep or eliminate, I used judgement and single-factor logistic regression. 

Judgement was used when it clearly made more sense to retain one variable over another, such 

as mean annual temperature over the mean temperature of any given individual month. In 

other cases, whichever variable was the most statistically significant with the greatest r2 value 

was kept and the other eliminated. 

After removal of redundant variables as indicated by Pearson’s r value, I evaluated the 

VIF to assess collinearity among all variables that were not initially dummy-coded. This is the 

approach recommended by Murray et al. (2012), who found that mixing dummy-coded and 

numeric predictor variables can produce artificially large VIF values even in the absence of 

variable collinearity. VIFs among the non-dummy coded variables were all at or below 5.2; thus, 

no additional variables were removed in this step. Adding the dummy-coded variables caused 

an increase in several variables’ VIFs, but these were not removed, following Murray et al 

(2012). Overall, removal of redundant variables reduced the total number of potential 

explanatory variables from 136 to 42 (Table 4).  

Table 4. Variables retained after statistical preprocessing. 

Variable type Initial number 
of variables 

Final number 
of variables 

Climatic 80 7 

Topographic 20 9 

Edaphic 33 24 

Biotic (vegetation indices) 2 1 

Anthropogenic 1 1 

Total 136 42 
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3.7 Modeling 

I used three types of models to analyze my data and model tree mortality: logistic regression 

(Pearl and Reed 1920), random forest (Breiman 2001), and conditional inference trees 

(Hothorn, Hornik, and Zeileis 2015). Logistic regression is a commonly employed statistical 

modeling method applied to data in which the response variable is categorical (Pohar, Blas, and 

Turk 2004). Random forest and conditional inference trees are somewhat similar to each other 

in that both are a decision-tree based approach, though each have different merits. Random 

forest is an ensemble approach that performs well with large sets of explanatory variables, 

even in cases in which a substantial number of them are unimportant, and is quite robust to 

overfitting (Breiman 2001; Díaz-Uriarte and De Andres 2006). A disadvantage of this modeling 

approach is that it is something of a black-box with regard to identifying the underlying 

thresholds chosen for splits in the model (Palczewska et al. 2014; Hauenstein, Wood, and 

Dormann 2018). Conditional inference trees by contrast fit a single decision tree to the data, 

and therefore do not have the advantages of an ensemble approach; however, important 

thresholds can be extracted from this type of model and used for interpretation. I chose 

conditional inference tree based modeling over more traditional classification tree modeling 

(CART), because conditional inference trees use a statistical significance test at each split, and 

so the growth of the tree automatically stops when there are no more significant relationships 

between the covariates and the response variable (Hothorn, Hornik, and Zeileis 2015). This can 

in some cases reduce the effort associated with determining optimal pruning parameters, as 
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the algorithm by design avoids excessive growth with diminishing returns. All modeling was 

done in R, and the code used is included in Appendix D. Using three different types of models 

allowed me to do three things: compare a substantial number of models to determine the best 

performing one for each Area; determine which modeling approach most consistently 

produced the best overall results; identify variables that seemed to be important across all 

model types. 

3.7.1 Variables groupings for modeling 

For all three types of models, I tried the full set of uncorrelated variables as well as several sub-

groups based on either variable type or variable importance indicators (Table 5). Some 

groupings, such as long-term climate variables with solar radiation and NDMI, and the soil & 

topographic variables grouping, were experimental in nature, based on fairly loosely associated 

variable types. 

Table 5. Variables groupings used in models. 

Model name Variables used 

AV All uncorrelated variables 

BC1 Climate variables only (long-term bioclimatic averages) 

BC2 Climate variables + solar radiation + NDMI 

HU Anthropogenic variable only (univariate – presence of grazing allotment) 

SO Soil variables only 

TP Topographic variables only 

TS Topographic + soil variables 

TV1 Top 1-3 variables from each single type grouping, as determined from random forest 

TV2 Top variables from the all-variables model, as determined from random forest 

TV3 Top 10 variables across all Areas, as determined from random forest mean decrease in 
accuracy measure 
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Model name Variables used 

TV4 Only variables significant at the 0.05 level in the all-variables model, as determined by logistic 
regression. 

 

Determination of what qualified as a top variable in random forest for models TV1 and 

TV2 was based on both the Gini purity and mean decrease in accuracy values, which are both 

indicators of variable importance. In order to be considered a top variable for use in these 

models, the variable had to have a considerably higher value than the other variables in the 

model in one or both of the variable importance indicators. What constituted a “considerably 

higher” value was a subjective judgement call, as the numeric values given in each of these 

importance measures are only relevant for within-model comparison and cannot be used in an 

absolute sense to compare variables across different models or to guide the selection of 

generalized cutoff value. If no variable had a considerably higher value than the other variables, 

then the variable that had the highest value as indicated by each measure was used in the “top 

variables” model grouping. 

3.7.2 Logistic regression 

I performed logistic regression on the above-mentioned groups of variables, using 5-fold cross 

validation to evaluate model accuracy. Although 10-fold cross validation is an often-used 

number, I determined that this would result in a small testing sample size (25-50 points) in each 

fold and thus highly variable performance; therefore, k=5 was a more appropriate number to 

use based on my dataset. I also manually tuned the initial models described in Table 5, by 

removing any variables that were not significant at least at the p ≤ 0.1 level, and re-running the 

algorithm on this reduced set of variables. This resulted in approximately 20-22 models per 



59 

Area using logistic regression. Each subsequent model run was named after the original model 

with the addition of -#, so for example the model with a reduced set of variables based on AV 

was named AV-1, and so on.  

3.7.3 Random forest 

A few parameters in random forest either require or provide the option of a user-specified 

value. For each sample set, I performed some initial tuning analyses to determine the optimal 

number of trees to grow and the optimal value for the number of variables randomly selected 

and tried at each split (mtry) for the all-variables model. For the smaller groupings of variables, I 

allowed mtry to remain at the default, which is the square root of the total number of features. 

Liaw and Wiener (2002) have noted that the random forest modeling approach is fairly 

insensitive to the value of mtry. For all datasets and all groupings, a forest of 1,000 trees was 

well beyond the point at which the classification accuracy ceased to improve. Oshiro et al. 

(Oshiro, Perez, and Baranauskas 2012) has shown that there is no advantage to increasing the 

number of trees in a random forest beyond what is actually needed to classify the dataset, so, 

for consistency, 1000 trees were used in all models across all Areas.  

Random forest is an ensemble approach that employs bagging with bootstrap 

replacement in the process of growing the forest. Each time the algorithm runs, approximately 

one third of the data set is held out of the training data. This out of bag (OOB) sample is used in 

calculating the generalization error and reported as the OOB error rate (Breiman 2001). 

Although not an identical process, this achieves the same effect as traditional cross-validation 

by estimating the error with data not used to train the model. Breiman (2001) has noted that 

using the OOB error eliminates the need for partitioning the data into training and testing sets, 
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and (Wolpert and Macready 1999) report that generalization error results from bagged data 

compare favorably to cross-validation; I therefore did not conduct an additional cross-validation 

for the random forest models as this would have been redundant. 

Similar to my approach in logistic regression modeling, I refined the models in each Area 

by removing all but the most important variables (as indicated by variable importance in the 

initial model run on each variables group) and re-running random forest with the reduced set. 

This resulted in a total of 16 models per Area using random forest. I followed the same naming 

convention as described in the above section for models in which I reduced the set of variables 

from the initial base model described in Table 5. 

3.7.4 Conditional inference trees 

I used conditional inference trees to build a single decision tree for each grouping of variables. 

Conditional inference trees use a statistical significance test at each split to choose the variable 

to split on, and to determine when no further splits will be created. The test is based on the 

calculated p value of each variable, and different significance levels can be specified. In order to 

select the best setting for each model, I used the train function in R in combination with 5-fold 

cross validation to select the optimal criterion to be used in the final model for each group of 

variables. I specified the following possible values of mincriterion, which is the inverse of the α 

to be used in determining if a split should be made (Hothorn, Hornik, and Zeileis 2015): 0.75, 

0.8, 0.85, 0.9, 0.95. I also specified in the model controls an arbitrarily chosen number of 10 as 

the minimum number of observations for a terminal node to contain. I used the results of the 5-

fold cross validation to assess the model accuracy, sensitivity, and specificity. Since tree growth 

automatically stops when no more statistically significant relationships exist in the data, 
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regardless of how many variables have or have not been used in the tree, there was no need to 

manually reduce the variables in the groupings and re-run the model, as was done in the other 

two modeling approaches.  

An advantage of conditional inference trees over random forest is the ability to extract 

important threshold values for the variables used in the model, above which there is more 

likely to be one classification outcome, and below which there is more likelihood of the 

opposite outcome. Once I had obtained these values from the final conditional inference trees 

grown, I back-transformed these to get the associated real-world values, rather than the 

standardized values used in the model, which are helpful for modeling but offer few insights for 

interpretation. The formula used to back-transform the values was: (standardized value * 

original sample standard deviation) + original sample mean. 

3.7.5 Model comparison 

I considered four metrics to compare models: overall accuracy, balanced accuracy ((sensitivity + 

specificity)/2), specificity, and sensitivity. Overall model accuracy was assessed as the average 

accuracy of the cross-validation folds for logistic regression and conditional inference tree 

models, and 1 minus the OOB error rate for random forest models, which in essence is once 

again the averaged accuracy across all iterations. Balanced accuracy differs from overall 

accuracy in that it can be a better estimator of true model accuracy in imbalanced data sets, 

and can expose overly optimistic average accuracies in biased models that take advantage of 

imbalanced testing data (Brodersen et al. 2010). In a perfectly balanced dataset, the balanced 

accuracy will be the same as the overall accuracy. Although the class imbalance in my data sets 

is very slight, I nonetheless considered the balanced accuracy to compensate for these slight 
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imbalances; in general, the difference between the balanced and overall accuracy in the models 

produced was negligible. Specificity and sensitivity were calculated from the confusion matrices 

generated for each model. In some cases, a given model produced a very high accuracy in the 

identification of one class while misclassifying a substantial proportion of the other. These 

models sometimes had a similar overall and balanced accuracy to models for which the 

sensitivity and specificity were more evenly balanced. In selecting the top performing model in 

each Area, I took this into consideration and favored models of the latter type. 

3.7.6 Final model selection 

After evaluating all the models tried in all Areas, I selected BC2 to refine for the final model, as 

it consistently had either the highest or second-highest balanced accuracy across all study 

Areas. To create a model that would generalize well and at the same time eliminate variables 

that contributed little to this model’s predictive power, I took the following steps. First, for each 

Area, I removed variables that had low importance according to the mean decrease in accuracy 

produced by random forest. I did this in a backward-stepwise manner, removing in each 

successive run the variable with the lowest mean decrease in accuracy score. When the OOB 

error increased by more than 2 percentage points between runs, I stopped removing variables 

and re-added the one that had been last removed. If the two least important variables had a 

very similar mean decrease in accuracy score, I experimented by removing each in turn and 

then proceeded with the model version that had the lowest OOB error.  

At the end of the process, I selected as the semi-finalist for each Area the model which 

used the smallest set of variables while still maintaining acceptable accuracy. My determination 

of what was acceptable accuracy was based on personal judgement, taking into account how 
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the initial BC2 model had performed. In Areas 1 and 2, I set the limit at an OOB error rate of no 

higher 19%, which was only 1-3.6 percentage points higher than the BC2 model in these Areas. 

In Areas 3 and 4, the OOB error was over 20% in all model versions including the original BC2, 

and so I chose the model refinement with the lowest OOB error. In Area 3 this model had an 

OOB error rate identical to BC2, and in Area 4 the semi-finalist model had an OOB error rate 

that was actually slightly lower than BC2. This left four, slightly different, top models based on 

BC2 – one per Area. I then noted which variables occurred in at least three of the four semi-

finalist models and built a final model, called BCfin, to be used in all the Areas for the final 

mortality prediction maps. I performed a test-run of BCfin in each Area to ensure that the 

model was able to predict mortality in the sample data with an overall accuracy, sensitivity, and 

specificity comparable to the other top models before applying the BCfin model to generate 

prediction maps for the entire study Area. 

3.7.7 Mortality prediction maps 

In each of the four study Areas, I used BCfin to generate a mortality prediction map for that 

Area. The raster used for the final prediction map was the same raster from which the mortality 

presence and absence samples were drawn, as noted in Section 3.5.3, and served as the 

validation dataset to determine if the final model can generalize beyond the dataset of 250-500 

points that it was trained and tested on. While a true validation dataset would contain only 

data that the model had never seen before, this raster did include the points used in the 

analysis dataset as well as previously unused data points. The number of total pixels in each 

raster, however, was quite large (19,772-30,541) in comparison to the number of points in the 

analysis dataset, and including those points produced a more complete mortality map. 
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For each Area, I generated two prediction maps: one classification map showing a binary 

prediction of mortality presence or absence, and one showing the predicted probability of 

mortality presence in each pixel. To assess the results, I created a confusion matrix from the 

classification map in each Area, using all pixels in the raster, and manually calculated the overall 

accuracy (correct predictions/total predictions), balanced accuracy ((sensitivity + specificity)/2), 

sensitivity (true positives/(true positives + false negatives)), and specificity (true negatives/(true 

negatives + false positives)). 

4. Results 

Results from this study are presented in three main sections: first, the results of the MESMA GV 

abundance estimation, upon which the rest of the analyses are based; I then turn to the 

assessment of tree cover changes throughout the four Areas, before finally reporting on the 

results of the models applied to explain tree mortality. 

4.1 MESMA 

MESMA image classification accuracy for GV across the four Areas ranged between 0.45 and 

0.799 in terms of R-squared (R2), between 0.179 and 0.232 in terms of RMSE, and between 

0.134 and 0.189 in terms of MAE (Table 6). The lowest accuracy was associated with Area 2. 

However, an examination of the scatterplot of predicted (i.e., MESMA data) and observed (i.e., 

reference data) GV cover values for all Areas (Figure 7) reveals that predictions for Area 2 were 

overall fairly comparable to those for the other Areas, except Area 2 had two extreme outliers 
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that substantially reduced the three accuracy measures. Excluding the outliers, R2, RMSE, and 

MAE values would be 0.627, 0.214, and 0.177, respectively. It is possible that the set of 

endmembers used was not a good match for some of the materials found in this scene. The 

results for Area 2 as well as for the other Areas could likely be improved by collecting additional 

field reference endmembers from the study Area, both of the target vegetation and some other 

commonly occurring materials in the Area such as senescent background vegetation, rocks, 

surface litter, and perhaps some additional soil endmembers. Using imagery from a different 

sensor with higher spectral resolution may also produce better results (Huang et al. 2009). 

Vegetation mapping accuracies obtained using MESMA in other studies, however, do vary 

somewhat and the results I obtained were generally within the range of those that have been 

reported elsewhere (e.g., Thorp, French, and Rango 2013; Brewer et al. 2017; Lippitt et al. 

2018). 

As an additional means of evaluating my results, I also assessed the within-plot 

heterogeneity of vegetation cover. Accuracy assessment plots were in all cases located in areas 

that were as homogenous as possible in terms of cover; however, true homogeneity in natural 

landscapes is difficult to find. This is indicated in the R2, RMSE, and MAE values of testing vs. 

training points in the reference plots, which ranged from 0.812 to 0.96, 0.056 to 0.075, and 

0.046 to 0.06, respectively (Table 7). Considering this within-plot heterogeneity, it is likely that 

at least some of the error in the MESMA results noted above is not due to actual modeling 

errors, but rather a result of the difficulty in accurately capturing 100 percent of the variability 

found in the reference data.  



66 

Table 6. Accuracy of MESMA GV estimates. 

Study area R2 RMSE MAE 

Area 1 0.799 0.193 0.142 

Area 2 0.450 0.232 0.189 

Area 3 0.637 0.190 0.140 

Area 4 0.629 0.179 0.134 

Table 7. Within-plot heterogeneity: training vs. testing points. 

Study area R2 RMSE MAE 

Area 1 0.960 0.065 0.052 

Area 2 0.942 0.056 0.046 

Area 3 0.812 0.075 0.060 

Area 4 0.885 0.075 0.057 
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Figure 7. Observed vs. predicted green vegetation values. 

4.2 Tree cover changes 

All four Areas experienced some reduction in tree cover between the years 2000 (Figure 8) and 

2005 (Figure 9), both in terms of absolute (Figure 10) and percent cover change (Figure 11), and 

all areas had some locations with increases in detected tree cover. Reduction in cover was most 

pronounced in Areas 3 and 4, and lightest in Area 1. Substantial portions of Areas 3 and 4 had 

close to 100 percent GV cover loss, and much of both Areas lost at least some cover (indicated 

by the red tones in Figure 11). Cover loss in Areas 1 and 2 appeared to be mainly concentrated 
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in the northern parts of the respective Areas, and there were relatively few areas that had a 

close to 100 percent cover loss on a per-pixel basis. In Area 1, most of the cover loss was 

localized in the far north-eastern region. Across the four Areas, high absolute cover loss was 

mainly concentrated in areas of high initial cover, whereas when examining relative cover loss, 

it becomes apparent that there was substantial mortality in areas with medium and low cover 

as well. This is observable in all the Areas, but most noticeable in Area 4 where the area 

represented in red nearly doubles in size from Figure 10 to Figure 11. The relative cover loss 

shown in Figure 9 also suggests that mortality was a little more widespread than indicated by 

the USFS IDS data, particularly in Area 3. Finally, there were also some parts of all Areas where 

tree cover increased between 2000 and 2005. These areas occurred almost exclusively in 

locations of very low or low pre-drought cover classes. In Areas 3 and 4, the locations of 

increase were relatively small in comparison to the areas of relative decrease, however in Area 

1 and 2, the areas of increase were more comparable in total area to the areas of decrease. In 

all cases, areas of increase seemed to be discrete, continuous patches, and not interspersed 

through the areas of mortality. 
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Figure 8. Abundance of green vegetation in 2000, as modeled by MESMA. 
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Figure 9. Abundance of green vegetation in 2005, as modeled by MESMA. 



71 

 

Figure 10. Absolute change in vegetation cover from 2000 to 2005, based on MESMA results. 
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Figure 11. Percent change in vegetation cover from 2000 to 2005, based on MESMA results. 
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4.3 Spatial models 

The second and third objectives of this study were to assess logistic regression, random forest, 

and conditional inference trees for their suitability to model tree mortality, and to determine 

which variables were most explanatory in predicting tree mortality. To achieve these objectives, 

I assessed the overall performance of all models tested. I also compared the three modelling 

techniques to each other, and assessed both the most explanatory categories of variables, and 

the most explanatory individual variables. Taking all of the findings into account, a final top 

model was built, tested, and those results are presented at the end of this section. 

4.3.1 Overall model performance 

Model performance exhibited some general patterns with regard to types of variables included 

(Figures 12-15). Models built exclusively on human or topographic variables consistently had 

the poorest results, with overall accuracy of the human variable models close to the no 

information rate of 50 percent. Models based only on topographic variables had overall 

accuracies across the four Areas ranging from 54 (Areas 2, 3) to 64 (Area 1) percent, with a 

median of 60 percent. There was a wide range of accuracy among soils-based models, from 53 

percent overall accuracy (Area 3) for the worst performing model to 83 percent overall 

accuracy (Area 1) for the best performing model. The median overall accuracy for soils-based 

models was 65 percent. Models built with a combination of topographic and soils data were 

also somewhat variable in accuracy, ranging from 55 percent (Area 4) to 79 percent (Area 1) 

overall accuracy, with a median of 67 percent. Models bult from bioclimatic factors ranged 

from 65 percent (Area 3) to 85 percent overall accuracy (Area 1), with a median of 76 percent. 

Models built from a combination of all variable types ranged from 64 percent (Area 4) to 83 
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percent (Area 1) overall accuracy, with a median of 76 percent; however, this included models 

built from the full set of all 42 variables, which were less optimal than models built from a 

smaller set of variables because of model complexity (Myung 2000). 

While BC2 was the top or second top model in each Area, other competing models 

varied by Area. In Area 1, the model that generated the highest overall accuracy (85 percent) 

was the random forest run of BC2; however, a random forest model built from the most 

important edaphic variables (SO-3) produced only slightly lower results, with an overall 

accuracy of 83 percent. The random forest model TV4 produced the same overall accuracy as 

the aforementioned edaphic variables model, however the sensitivity and specificity of the TV4 

model was more unbalanced than in the case of SO-3, with TV4 being a better predictor of 

mortality but a poorer predictor of survival. Both BC2 and TV4 in this Area used eight variables, 

while SO-3 used five, making it the more optimal model in terms of complexity. Among the 

three models, sensitivity ranged 82-91 percent, and specificity ranged 75-85 percent. 

In Area 2, the top model was the random forest model BC2, with an overall accuracy of 

82 percent. The second highest overall accuracy was achieved with the random forest model 

TV4, with an accuracy of 81 percent. The random forest model TV2 produced very similar 

results, with an overall accuracy of 81 percent, however TV4 used ten variables, while TV2 used 

only three. All three models had comparable sensitivity and specificity, identifying true positives 

(mortality) with an accuracy of around 76-78 percent, and true negatives (survival) with an 

accuracy of about 84-86 percent. 

In Area 3, the highest accuracy was produced by the random forest model AV, with an 

overall accuracy of 76 percent. The BC2 random forest model, however, produced an almost 
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identical accuracy, also 76 percent, and used only eight variables, as compared to AV which 

used the full set of all variables. The next best overall accuracy of 75 percent was obtained from 

the random forest model TV3, which was a combination of ten bioclimatic and soil variables. 

Sensitivity and specificity for the three models was quite similar, with sensitivity ranging 76-77 

percent and specificity ranging 73-75 percent. 

In Area 4, the highest accuracy came from the random forest model TV1, with an overall 

accuracy of 80 percent. The random forest BC2 model produced an overall accuracy of 79 

percent. The next best predictive model, with an overall accuracy of 78 percent was the 

random forest model AV. As noted above, however, the AV model is built from the entire set of 

forty two variables and so has substantially greater complexity. By comparison, TV1 in Area 4 

used twelve variables, and BC2 used eight. Sensitivity and specificity range among the three 

models was 77-79 percent, and 76-80 percent, respectively. 

While the model SO-3, built from edaphic variables only, performed very well in Area 1, 

this was not a pattern in the other three Areas, suggesting that edaphic variables alone are not 

able to consistently predict mortality well in the four Areas and at the scale studied. Apart from 

this one exception in Area 1, all of the other top three models in all Areas were built either from 

bioclimatic variables or some combination of variables of multiple types. All except SO-3 

included at least three of the four variables ultimately chosen for the final model, BCfin. It 

appears from this evidence that, in general, models built partially or completely from 

bioclimatic variables are the most accurate predictors for mortality among the models 

considered. Model results for all Areas can be found in Appendix E. 
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4.3.2 Comparison of model types 

Model accuracy was in general more closely tied to the set of input variables used, as discussed 

above, than to the model type. In general, however, random forest models tended to produce 

better results than conditional inference trees and logistic regression models (Figures 12-15). 

This was most noticeable among the soils-only models, where random forest models had 

balanced accuracies which were on average 5.5-6.5 percentage points higher than the highest 

accuracy achieved by a logistic regression or conditional inference tree model (minimum and 

maximum difference averaged across all Areas). In each Area, seven to nine of the top ten 

highest accuracy models were random forest models, and in each Area the highest balanced 

accuracy was obtained from a random forest model. It may be that the ensemble approach of 

random forest is better able to capture the complex relationships between variables than the 

other two methods, and that may explain why the random forest models in general had better 

overall accuracies than the other two type of model. The performance of logistic regression vs. 

conditional inference trees showed no discernable pattern, with logistic regression producing 

better results in some cases and conditional inference trees performing better in others. 
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Figure 12. Area 1, all models ranked by balanced overall accuracy. RF = random forest, LR = logistic regression, 
ctree = conditional inference tree. 
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Figure 13. Area 2, all models ranked by balanced overall accuracy. RF = random forest, LR = logistic regression, 
ctree = conditional inference tree. 
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Figure 14. Area 3, all models ranked by balanced overall accuracy. RF = random forest, LR = logistic regression, 
ctree = conditional inference tree. 
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Figure 15. Area 4, all models ranked by balanced overall accuracy. RF = random forest, LR = logistic regression, 
ctree = conditional inference tree. 

4.3.3 Factors explaining pinyon mortality 

The ultimate goal of this study was to determine the variables that best explain pinyon 

mortality. Each of the modeling techniques used yielded information of a slightly different type, 

and taken together, these complementary attributes help round out the picture of the 

relationship of explanatory variables to tree mortality. 
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4.3.3.1 Variable importance from random forest 

Random forest evaluates variable importance based on two criteria – mean decrease in 

accuracy and mean decrease in Gini Impurity, which represents how well a variable was able to 

split a group of observations into pure nodes. While both are meaningful measures, I present 

here only mean decrease in accuracy (Figures 16-20) as there were few differences in the 

variables indicated as important by the two measures. Mean decrease in accuracy is a measure 

of the change in prediction accuracy when the variable is permuted; the difference in accuracy 

is averaged across all trees in the forest and normalized by the standard deviation of the 

differences (Breiman et al. 2018). While extreme caution must be used in attempting to 

interpret the absolute values outside of the model for which they were generated, the numbers 

do give a general sense of which variables were more important than others. A large mean 

decrease in accuracy as a result of the permutation indicates high variable importance, while a 

value close to zero can be interpreted to mean that the variable is unimportant (Cassidy and 

Deviney 2014). Variable importance according to mean decrease in accuracy varied somewhat 

across the four Areas. When variable importance from all models and all Areas were evaluated 

together (Figure 20), seven of the top ten variables were bioclimatic, and three were edaphic 

(Table 8).  

Table 8. Top 10 variables by mean decrease in accuracy (random forest). 

Variable name Represented feature Areas in which this was a 
top 10 variable 

bio3 Isothermality A1, A2, A3, A4 

bio6 Minimum temperature of coldest month A2, A3, A4 

ndmi2000 Pre-drought NDMI A1, A2, A3, A4 
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Variable name Represented feature Areas in which this was a 
top 10 variable 

bio9 Mean temperature of driest quarter A1, A3, A4 

bioppnov November precipitation A1, A2, A3, A4 

bio18 Precipitation of warmest quarter  A1, A2, A3, A4 

soawcft1 AWC of the top 31 cm (1 ft) of soil A1, A2, A3, A4 

soclaytot Clay percent of top 122 cm (4 ft) of soil profile (weighted 
average) 

A1, A2, A3 

bio15 Precipitation seasonality [coefficient of variation] A2, A3, A4 

sosrfclpct Clay percent of the surface soil A1, A3, A4 

   

Although there was some variation in order, half of the variables in Table 8 were among 

the top ten for each of the four Areas, and the other half were in the top ten for at least three 

of the four Areas. In Areas 1, 2, and 4, bio3 consistently ranked highest in variable importance 

across all the models it was used in, and in Area 3, bio6 was consistently the top variable. 
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Figure 16. Area 1, variable importance in random forest models. 
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Figure 17. Area 2, variable importance in random forest models. 



85 

 

Figure 18. Area 3 variable importance in random forest models 
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Figure 19. Area 4, variable importance in random forest models. 
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Figure 20. All areas combined, variable importance in random forest models. 

 

4.3.3.2 Variable attributes from logistic regression models 

To gain more insight about the ten variables indicated in Table 8 and their relationship to tree 

mortality in the study Areas, I analyzed the information I was able to gain from the logistic 
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regression model outputs. The two measures I inspected were the sign of the coefficient, 

indicating a negative or positive relationship to tree mortality, and the returned value of Pr>|z|, 

indicating the statistical significance of the relationship. Both were somewhat variable across 

models and Areas (Figures 22-26). 

 

Figure 21. Direction of the relationship between the variables identified in Table 9 and tree mortality, as indicated 
by the sign of the coefficient across all or the majority (where results were inconsistent) of logistic regression 
models run in each Area. 

While the value of the coefficient for each variable was understandably different in 

different models, I had expected the sign of the coefficient to be the same throughout, and 
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across all Areas, indicating a generally similar direction of relationship to tree mortality, 

however, this turned out not to be the case. While the coefficient sign was fairly consistent 

across all models in any given Area, it was not the same across all Areas for eight of the ten 

variables. A summary visualization is presented in Figure 21, where increasing likelihood of tree 

mortality is indicated by the central arrow, and the majority sign of the coefficient for each 

variable in each Area is presented in the diagram’s branches. 

With regard to variable significance, in each Area, there were certain variables that 

consistently had a low Pr>|z| value, but the precise variables for which this was true varied by 

Area. Taken together, both of these findings appear to suggest that the relationships between 

these variables and tree mortality are complex and difficult to disentangle. There may also be 

other contributing factors, and a more detailed assessment of each variable is presented below. 

 

Figure 22. Significance of the relationship between variables and tree mortality in logistic regression models for 
Area 1. Results presented are for the ten variables identified from random forest in Table 9. 
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Figure 23. Significance of the relationship between variables and tree mortality in logistic regression models for 
Area 2. Results presented are for the ten variables identified from random forest in Table 9. 

 

Figure 24. Significance of the relationship between variables and tree mortality in logistic regression models for 
Area 3. Results presented are for the ten variables identified from random forest in Table 9. 
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Figure 25. Significance of the relationship between variables and tree mortality in logistic regression models for 
Area 4. Results presented are for the ten variables identified from random forest in Table 9. 

 

Figure 26. Significance of the relationship between variables and tree mortality in logistic regression models, 
aggregated across all four Areas. Results presented are for the ten variables identified from random forest in Table 
9. 
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Bio3. Bio3, isothermality, had a consistently low Pr>|z| value across all the logistic 

regression models it was used in. In most, it had a Pr>|z| value of <0.0001. The highest value 

was 0.34, in Area 3. This is consistent with the results from random forest and conditional 

inference trees (next subsection) that indicated bio3 is in general a highly important variable, 

but with a weaker relationship to tree mortality in Area 3 than in the other Areas. In all cases, 

the sign if the coefficient was negative, indicating a higher likelihood of mortality at sites with a 

lower isothermality value, and thus, a larger difference between diurnal temperature variability 

and annual temperature variability. Isothermality represents the ratio of the mean diurnal 

temperature range to the annual temperature range. Values smaller than unity indicate that 

temperature variability within an average month is less than the annual summer-to-winter 

oscillations (O’Donnell and Ignizio 2012). The smaller the value, the more difference there is 

between the diurnal temperature range and the annual range. 

Bioppnov. Bioppnov, November precipitation, in general had a significant relationship 

with tree mortality, with a Pr>|z| value consistently <0.0001 in Areas 3 and 4, and <0.05 in all 

but one model in Area 2. In Area 1, the Pr>|z| value approached 1 in all models, indicating that 

this variable was not explanatory in logistic regression models for tree mortality in this Area. In 

Areas 1, 2, and 3, bioppnov was negatively related to increasing likelihood of tree mortality, and 

in Area 4, the relationship was positive. Williams et al. (2013) found winter precipitation to be 

an important variable in modeling drought-related pinyon mortality, and the importance of 

winter precipitation for deep soil water recharge has been noted by others (Phillips and 

Ehleringer 1995; West et al. 2007). It is unclear why there was a positive relationship in Area 4, 

however, it could be that in this Area, where the precipitation averages slightly higher than in 
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other Areas, sites with higher winter precipitation had higher mortality due to structural 

overshoot (Jump et al. 2017). 

Bio15. For bio15, precipitation seasonality, the significance in logistic regression models 

varied by Area. In Areas 3 and 4, the Pr>|z| value was consistently <0.001. In Areas 1 and 2, it 

ranged from 0.27 to 0.73, depending on the model. In Areas 1 and 4, the relationship of this 

variable to likelihood of tree mortality was positive, and in Areas 2 and 3, the relationship was 

predominantly negative. Given this inconsistency, it may be that the relationships between 

bio15 and tree mortality are spurious, despite the apparent significance in two of the Areas.  

Ndmi2000. Ndmi2000, the pre-drought NDMI value, had a Pr>|z| value of <0.05 in all 

logistic regression models for in Areas 1, 3, and 4. In Area 2, the Pr>|z| value ranged from 0.002 

to 0.12, depending on the model. This was also the only Area in which the sign of the coefficient 

was negative instead of positive. NDMI was highly correlated with NDVI in the data used in this 

study, so from these results it appears that sites with higher green biomass and higher 

vegetation moisture had, in general, higher probability of mortality. As with winter 

precipitation in Area 4, this may be evidence of some structural overshoot (Jump et al. 2017) or 

perhaps some density-dependent mortality. In Areas 2, the opposite was the case, however, as 

noted, some of the Pr>|z| values were quite high so it could be that this variable was a poor 

predictor in Area 2. 

Bio18. For bio18, the precipitation of the warmest quarter, the Pr>|z| value, while 

generally low (<0.05), was quite variable in all Areas, ranging overall from <0.0001 to 0.96, 

suggesting that the strength of the relationship for this variable is dependent upon the 

presence of certain other variables or certain combinations thereof. In Areas 1, 2, and 3, the 
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relationship between bio18 and mortality was a positive one, however in Area 4, the 

relationship was negative. In general, it appears that mortality was higher at sites where the 

precipitation of the warmest quarter is typically higher. This may indicate a heavier reliance on 

the summer monsoon for moisture in Areas 1, 2, and 3, and also may be evidence of some 

structural overshoot (Jump et al. 2017), as noted above in the case of bioppnov. 

Bio6. For bio 6, the minimum temperature of the coldest month, the Pr>|z| value was 

variable across models in all Areas and ranged from <0.0001 to 0.9, suggesting that, like bio18, 

the usefulness of this variable in a logistic regression model depends on other variables 

included in the model. Unlike bio18, however, the sign of the coefficient was consistently 

negative across all models in all Areas, with the exception of one non-significant positive 

relationship in one Area 4 model. This suggests that in all four Areas, higher likelihood of 

mortality is associated with sites that have lower minimum temperatures. This could be a direct 

relationship, or it is possible that lower minimum temperature is in this case acting as a 

surrogate for sites with a higher elevation or higher seasonal variability. 

Sosrfclpct. For sosrfclpct, the percent clay content of the surface soil, the Pr>|z| value 

ranged from 0.0001 to 0.94, with many of the higher values occurring in models for Areas 2 and 

3. In general, most of the coefficients associated with this variable were positive, indicating that 

the likelihood of mortality increases with increasing clay percent in the soil surface. The 

exception to this was Area 4, where the relationship was always negative, indicating better 

chances of survival with increasing clay percent in the surface soil. The soil surface clay percent 

minimum, maximum, and average in Area 4 did not differ appreciably from those of the other 

Areas, so it is unclear why there was a difference in the direction of the relationship, however it 
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could be that in this Area, surface clay percent covaries with some other more explanatory 

phenomenon not included in this study. 

Soclaytot. The Pr>|z| value for soclaytot, the weighted average clay content of the soil 

profile, varied by Area and model, but in no cases was it ever smaller than 0.01. In the majority 

of cases, the significance of this variable was quite weak, indicating that, while it may have 

been helpful in tree-based models, most of the logistic regression models fit were unable to 

make effective use of this variable. In Areas 1 and 4, the relationship was mostly positive, and in 

Areas 2 and 3, the relationship was mostly negative. There are two possible explanations – the 

first is that, as hypothesized for bio15, this may in fact be a spurious relationship. The second 

possibility is, given the difficulty that logistic regression models had in finding a significant 

relationship at all, there may be a threshold clay content value beyond which likelihood of 

mortality increases, rather than a progressively increasing/decreasing relationship. Given the 

water-holding properties of clay, it would not be surprising if this were the case. As compared 

with a sandy soil, a soil with moderate clay content typically has a higher AWC, which is usually 

beneficial to plants. However a soil that is very high in clay can actually be detrimental as it will 

hold the soil water so tightly that plants have increased difficulty accessing it. 

Soawcft1. soawcft1, the AWC of the first foot of soil, displayed a wide range of values 

for Pr>|z|, but in general was only weakly to non-significant in most logistic regression models 

and was <0.1 in only six out of twenty-four cases. In Areas 1 and 2, the direction of the 

relationship defined by the logistic regression model was usually negative, and in Areas 3 and 4, 

the coefficient was usually positive. As hypothesized with soclaytot, it may be that a certain 
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threshold value defines the relationship of this variable to mortality better than a constant rate 

of increase or decrease. 

Bio9. bio9, mean temperature of the driest quarter, had the largest median value of 

Pr>|z| out of the ten variables considered. In a quarter of cases, the Pr>|z| value was <0.05, 

however in the other three-fourths, the value ranged from 0.08 to 0.9. In Areas 1, 3, and 4, the 

coefficient was usually positive, however in Area 2, the coefficient was consistently negative. 

Given the inconsistencies observed and relatively high Pr>|z| values, it could be that this 

variable is a poor predictor of mortality in the models tried, and the importance indicated by 

random forests may be the result of a spurious relationship. 

4.3.3.3 Patterns in variables from conditional inference trees 

In Areas 1, 2, and 4, isothermality (bio3) was the variable consistently chosen, when available, 

as the root node in conditional inference trees, indicating the most significant statistical 

relationship. In Area 3, the relationship with isothermality was comparatively weak, and instead 

the minimum temperature of the coldest month (bio6) was the variable consistently selected as 

the root node in conditional inference trees. These results follow the patterns observed in 

random forest models with regard to variable importance (Figures 16-20), and the patterns of 

statistical significance seen in the logistic regression models (Figures 22-26). 

I built a single-split, univariate conditional inference “tree” -otherwise known as a 

stump- using bio3 for Areas 1, 2, and 4, and bio6 for Area 3. While only achieving poor to 

moderate overall accuracy in each Area, these stumps did reveal some interesting patterns 

(Figures 27-30). In Area 1, 70.3 percent of the sites that has an isothermality value of ≤346 

experienced mortality, compared with only 5.3 percent of the sites that had an isothermality 
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above 346 (Figure 27). In Area 2, the isothermality threshold that provided the best split was 

also 346. In this Area, 86.4 percent of the sites with a value ≤346 had mortality, while only 30.1 

percent of the sites with an isothermality value higher than this experienced mortality (Figure 

28). In Area 4, 62.5 percent of the sites with an isothermality value ≤339 had mortality, vs. 34.6 

percent of the sites with an isothermality value higher than this (Figure 30). Even though the 

threshold value selected by the algorithm was slightly different for Area 4 than for Areas 1 and 

2, in all three Areas the prevalence of mortality increased at smaller isothermality values. As 

noted above, isothermality represents the ratio of diurnal to annual temperature range. In the 

dataset used for this analysis, the initial ratio obtained is multiplied by 1,000, so a hypothetical 

value of 1,000 would indicate a diurnal range that is equal to the annual temperature range. 

I attempted to build a univariate stump in bio3 for Area 3 for comparability; however, 

the statistical relationship between this variable and mortality presence/absence was less than 

the minimum threshold set (p=0.25) and the model failed to run. A univariate tree built on bio6, 

however, revealed that, among observation points for which the minimum temperature of the 

coldest month was less than or equal to -6.8 °C, 60.1 percent of the sites had mortality, 

compared with 25.9 percent of the sites that had a minimum temperature higher than this, 

indicating that a lower minimum temperature of coldest month was correlated with higher 

mortality (Figure 29). 
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Figure 27. Area 1, univariate conditional inference tree. Cross-validated overall accuracy = 77.8 percent. 
Backtransformed value: 0.705 represents an isothermality value of 346. 

 

Figure 28. Area 2, univariate conditional inference tree. Cross-validated overall accuracy = 74.8 percent. 
Backtransformed value: 0.705 represents an isothermality value of 346. 
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Figure 29. Area 3, univariate conditional inference tree. Cross-validated overall accuracy = 57 percent. 
Backtransformed value: 0.553 represents a temperature of -6.8 °C. 

 

Figure 30. Area 4, univariate conditional inference tree. Cross-validated overall accuracy = 61.9 percent. 
Backtransformed value: -0.42 represents an isothermality value of 339. 
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Univariate stumps built from other top variables (Appendix F) revealed less clear 

patterns, with thresholds and direction of relationship being somewhat variable according to 

Area. These inconsistent results suggest that none of these variables is a very good ubiquitous 

predictor of mortality on its own, and it is only when considered together with other variables 

that they become predictive. This would seem to speak to the complexity of the system being 

modeled, and the shortcomings inherent in attempting to consider a single factor without also 

considering the suite of other factors present in the system. 

4.3.4 Factors selected for the final model 

I used the model BCfin, which included the variables isothermality (bio3), minimum 

temperature of coldest month (bio6), precipitation of warmest quarter (bio18), and pre-

drought NDMI (ndmi2000), to create mortality prediction maps for all four Areas. I generated 

two sets of prediction maps: hard classification (Figure 31), and probability of mortality (Figure 

32). In both cases, the mortality predictions qualitatively appear to be a good match to the 

areas of mapped GV cover loss. Quantitatively, the overall balanced accuracy of the prediction 

maps for the validation data (Table 9) was similar to -and in some cases slightly better than- the 

accuracy obtained on the dataset used to fit the model (Table 10), as was the sensitivity. 

Specificity for the predictions on the validation set vs. the analysis dataset was quite 

comparable as well. From these indicators it appears that the BCfin model has good 

generalizability and was able to predict mortality across the four study Areas with a reasonable 

level of accuracy.  

I also assessed the spatial patterns of misclassification by the model BCfin in each Area. 

Most of the misclassifications (Figure 33) in Areas 3 and 4 occurred at the transition zones 



101 

between contiguous areas of mortality and contiguous areas of survival. Additionally, many of 

the “false-positives” in Areas 2, 3, and 4 occurred in areas that had experienced some cover 

loss, but not enough to be considered mortality by the cutoff of ≥ 45 percent chosen for this 

study. In Area 1, the BCfin model overpredicted mortality substantially, and while at the 

northeastern extreme of the Area, some pixels incorrectly classified as mortality did in fact 

experience some lesser degree of cover loss, this was not the case for the rest of the Area, in 

which relatively large areas of survival were misclassified as mortality. As evidenced in Table 9, 

the model in most Areas did a better job of accurately predicting mortality than survival. 

Table 9. Accuracy of mortality prediction maps (validation dataset). 

Area Overall accuracy Balanced accuracy Sensitivity Specificity 

Area 1 0.744 0.834 0.934 0.734 

Area 2 0.792 0.840 0.900 0.781 

Area 3 0.801 0.805 0.821 0.789 

Area 4 0.819 0.819 0.810 0.828 

Table 10. Accuracy of BCfin (analysis dataset) 

Area Overall accuracy Balanced accuracy Sensitivity Specificity 

Area 1 0.811 0.810 0.872 0.748 

Area 2 0.812 0.812 0.776 0.847 

Area 3 0.722 0.722 0.732 0.712 

Area 4 0.765 0.765 0.758 0.772 
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Figure 31. BCfin predicted presence of mortality. 
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Figure 32. BCfin predicted probability of mortality. 
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Figure 33. BCfin areas of misclassification. 
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5. Discussion 

While the immediate combined effects of a severe drought and bark beetle outbreak during the 

early 2000s were the direct agents of the tree mortality observed in the region during this time 

period (Breshears et al. 2005; Shaw, Steed, and DeBlander 2005; McDowell et al. 2013), less 

transient features such as site related characteristics may put trees at a higher risk for drought 

stress and consequent mortality (Shaw 2006; McDowell et al. 2008). Landscape scale indicators 

of high mortality risk may be useful for pro-active management and conservation efforts (Gitlin 

et al. 2006). This study was designed to identify non-transient site characteristics that may 

prove helpful in predicting drought-related pinyon mortality at the landscape scale, selected 

from a broad range of variable types in relation to drought related pinyon mortality. Discussed 

below are the results of the mortality mapping, a comparison of the model types used in this 

study, and the variables that best explained pinyon mortality. 

5.1 MESMA performance 

Accuracy of the GV cover maps varied a little by Area, but overall were within acceptable 

ranges. The GV cover estimates produced by MESMA had MAE values of 0.13-0.19 and R2 

values between 0.45 and 0.8, with Area 2 results inferior to that of the other Areas. Collecting 

more endmembers in the field from within the study area would likely have improved the 

accuracy in all Areas. Thorp, French, and Rango (2013) report that MESMA is more sensitive to 

spectral resolution than spatial resolution and thus using imagery from a different sensor with 

more spectral bands, such as MODIS, might also have produced a higher degree of accuracy, 

although this would have meant conducting the analysis at a somewhat coarser spatial scale. 
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The accuracies I obtained, however, were not too far removed from those reported by others 

(Thorp, French, and Rango 2013; Brewer et al. 2017; Lippitt et al. 2018) using MESMA to map 

woody vegetation, and, even in Area 2, were adequate for the subsequent analyses, using the 

criteria of ≥ 45% cover loss = mortality presence. 

5.2 Tree cover changes 

The mortality maps that resulted from the MESMA modeling allowed for a fine-grained look at 

the cover change patterns throughout the four Areas. The mortality patterns observed in the 

four Areas were in line with what has been reported by others (Breshears et al. 2005; Clifford et 

al. 2008, 2013; Kleinman et al. 2012; USDA Forest Service, Forest Health Protection and its 

partners 2014; Meddens et al. 2015), with light mortality in the south grading to substantially 

heavier mortality in the north. Hotspots of mapped mortality had good agreement with 

mortality locations identified by the USFS IDS polygons. However, the mortality maps generated 

by the image differencing also identified some additional areas of mortality, particularly in Area 

3. It could be that the extent of the mortality was less noticeable during USFS aerial flights in 

areas where there were fewer trees to die. The MESMA pixel-by-pixel analysis also allowed for 

the identification of areas with varying degrees of cover loss and those with little to no 

mortality interspersed with the areas of higher mortality, an element important to the 

modeling phase.  

Absolute cover loss was highest in areas of higher pre-drought cover, which agrees with 

the speculations of Kleinman et al. (2012). However, when relative cover loss was examined, a 

much more uniform pattern of mortality emerged, indicating that, in terms of percent change, 
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tree mortality in high-density stands was similar to that of many sites with medium or low 

cover, which supports the conclusions of authors who found little to no effect of stand density 

on mortality (Clifford et al. 2008; Clifford, Cobb, and Buenemann 2011; Ganey and Vojta 2011; 

Macalady and Bugmann 2014). Areas of very low pre-drought cover experienced little to no 

mortality, and in some cases an increase in GV, possibly due to a lack of pinyon and instead 

dominance by juniper and woody shrubs in these areas, although gathering the data needed to 

confirm this hypothesis was beyond the scope of this study. The general patterns of mortality 

are probably best explained by the causative agents suggested by others; for example, a south 

to north gradient of drought intensity (Breshears et al. 2005) and potentially higher ips 

populations in some areas (Clifford et al. 2008). Explaining the more fine-scale mortality 

patterns in relation to site-specific variables is the subject of this study and discussed further in 

the sections that follow.  

The areas in which GV increased between 2000 and 2005 occurred almost exclusively in 

locations of very low or low pre-drought cover classes. While uncovering the precise reason for 

this was not within the scope of this study, I speculate here on several possible explanations. It 

could be that these areas, despite being classified as pinyon-juniper woodlands, were in fact 

more of a juniper savanna, or at least were areas heavily dominated by junipers. Juniper during 

this drought underwent far less extensive mortality than pinyon (Mueller et al. 2005; Shaw 

2006), and it is possible that both the existing trees and any coinciding woody shrubs may have 

actually increased their biomass during the 2000-2005 time period. It may also be that, in 

addition to low competition for resources due to low tree density, local topography and 

microclimate was favorable to growth and recruitment in these areas. From a qualitative visual 
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assessment, at least some areas of high increase appear to be located in features likely to 

receive run-on during intense rainfall events, such as canyons and piedmonts. Another less 

likely possibility is that the trees that survived the drought -both pinyon and juniper- may have 

benefitted from decreased competition following the mortality of their neighbors, and 

subsequently increased their photosynthetic biomass in response to greater availability of 

resources (Mueller et al. 2019). While this explanation may be plausible in areas where the 

increase was patchily interspersed with decrease, it is unlikely to explain the larger continuous 

areas of increase; additionally, one would expect to see a response to competitive release more 

pronounced in areas of high pre-drought cover than in the very low cover classes. It is also 

possible that at least some of these areas simply represent errors in the MESMA modeling. 

According to the MAE obtained from the accuracy assessment, the GV abundance estimates 

have an average margin of error of around +/- 14-20 percent, depending on Area; it could be 

that in areas of lower initial cover the effects of this were more noticeable. Improving the 

accuracy of the underlying GV cover maps would be a priority in any future investigation. Given 

the size of the collective study area, it is quite likely that the true explanation for the apparent 

increase in GV is some combination of these hypotheses, or perhaps a mix of these and some 

other explanation not considered here. 

5.3 Model comparisons 

Due to the multi-model approach used, there were two main kinds of model comparisons to be 

made, first between the three general model types used, and then between the actual 

groupings and categories of potentially explanatory variables. 
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5.3.1 Comparison of model types 

Each of the modeling types used proved to have its own merits and weaknesses. Random forest 

models generally produced higher overall accuracies than logistic regression or conditional 

inference tree models bult on the same set of variables. Although random forest was the best 

among the three model types used as far as correctly modeling mortality, the “black box” 

nature of the algorithm (Palczewska et al. 2014; Hauenstein, Wood, and Dormann 2018) is such 

that it was impossible to isolate either the variable thresholds used or the nature of the 

relationships between the variables and mortality. While it appears that random forest is a 

good choice for modeling tree mortality when the interpretation of the variables used is not all 

that important, logistic regression and conditional inference trees may be better options when 

more information about the relationship is desired.  

Neither logistic regression nor conditional inference trees consistently outperformed 

the other. This was a little unexpected, as the two methods use different approaches – 

conditional inference trees are based on recursive binary partitioning (Hothorn, Hornik, and 

Zeileis 2015), while logistic regression, through use of the logit, attempts to model a more 

linear relationship of probabilities to a binary outcome (Peng, Lee, and Ingersoll 2002). In 

logistic regression, therefore, there is only one “tipping point” in the relationship of a variable 

to the dichotomous outcome, whereas conditional inference trees can capture more complex 

relationships such as higher mortality both above and below a middle-range of values, and/or 

non-linear relationships that depend on the value of another variable. Logistic regression has 

been used successfully by others in their analyses of pinyon mortality and insect infestation 

(Negrón and Wilson 2003; Greenwood and Weisberg 2008; Santos and Whitham 2010), so I did 
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not expect poor results from this modeling approach, however, given the complexity of 

environmental relationships in natural systems, I had expected conditional inference trees to 

produce generally better results than logistic regression. This turned out to be an incorrect 

prediction. The most apparent explanation for this is that perhaps many of the variables can be 

partitioned more linearly than I had previously assumed. This supposition can be supported 

inferentially by the success the aforementioned authors had with logistic regression, and 

further bolstered by the work of Clifford et al. (2013) and Peterman et al. (2013) who were able 

to identify a single threshold value for one or more variables, above/below which probability of 

pinyon mortality was markedly lower. 

5.3.2 Comparison of variable types 

Of the variables considered, long-term climatic variables were the most consistently predictive 

of mortality across all four study Areas. Models built with bioclimatic variables or with a 

combination of variable types produced the highest overall accuracies, followed by models built 

from edaphic variables. Models built from topographic variables had consistently low overall 

accuracies, and models based on the presence of grazing had accuracies near the no-

information rate, suggesting no relationship to mortality. 

Bioclimatic variables in this study turned out to be the category of variables that most 

accurately predicted mortality from among the type groupings. Long term climatic habitat 

suitability in relationship to mortality has been the focus of several other studies (Kleinman et 

al. 2012; Lloret and Kitzberger 2018; Law et al. 2019). While habitat suitability was not 

specifically investigated in this study, climatic variables are typically a key component in Species 

Distribution Models, often used to model vegetation dynamics across a species’ range (Lloret 
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and Kitzberger 2018), and are commonly used in dynamic global vegetation models modeling 

mortality (McDowell et al. 2011). Thus the result that climatic averages were, as a category, 

good predictors of mortality in this study is supported by the science of vegetation dynamics 

and habitat modeling, and agrees with the results of other researchers (Kleinman et al. 2012; 

Lloret and Kitzberger 2018) who have described a correlation between pinyon mortality during 

the early 2000s drought and climatic site suitability. The one biotic variable, NDMI, was also 

quite important in most models, and will be discussed further in the section below on factors 

explaining pinyon mortality. 

Models built on a combination of all variable types also had generally good overall 

accuracy, although as noted in the results, model complexity was a concern in some cases. 

Natural systems are complex, however, and it is a reasonable expectation that combining 

variables of different types, and possibly even a relatively large number of them, would 

produce a decent predictive model. This result, therefore, was somewhat unremarkable, except 

to say that in all cases, the combinations of variables used required the inclusion bioclimatic 

variables, which were the most predictive category, to achieve desirable overall accuracies. 

Multi-type models which excluded these variables, and were built on a combination of soil and 

topographic variables only, did not produce similarly good results. 

Edaphic variables in this study produced mixed results. A model built only from edaphic 

variables had high prediction accuracy in Area 1, competing with the top model in that Area, 

but the same was not the case in the other three Areas. One possible explanation for this is as 

follows: tree mortality was considerably lower in Area 1 than in the other Areas, and Clifford et 

al. (2008) has hypothesized that perhaps the pinyon ips outbreak wasn’t as severe in this area. 
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Reed and Hood (2020), in a study of drought related tree mortality in California, identified the 

presence of insect herbivory as a confounding factor that may have masked the effects of other 

potentially explanatory variables such as soil texture in their study. Floyd et al. (2009) also 

mention the severity of the drought and the concurrent widespread beetle kill potentially 

masking the effects of other contributing agents. If the pinyon ips outbreak in Area 1 was in fact 

less severe, then it could be that the relationships between soil characteristics and drought 

stress were more clearly discernable because insect pressure was less. I have not encountered 

any studies which quantified the ips population at the time in relation to geography, so this 

potential explanation remains highly speculative. Another possible explanation is that soil 

characteristics in this study simply were not as explanatory as other variable types in Areas 2-4, 

or at least, were not enough to predict mortality without the addition of other variables. This 

would follow with the generally mixed results found in other studies. In a regional scale study, 

Peterman et al. (2013) found AWC was strongly related to mortality, and Ogle, Whitham, and 

Cobb (2000), Gitlin et al. (2006), Greenwood and Weisberg (2008) and Bowker et al. (2012) all 

observed that soil type or texture was correlated with mortality. However Floyd et al. (2009), 

Koepke, Kolb, and Adams (2010), and Clifford et al. (2013) reported no observable correlation 

between soil characteristics and drought-related pinyon mortality in their studies. Gitlin et al. 

(2006) reported that mortality at their study site was higher in shallow soils, but Flake and 

Weisberg (2019) reported that in their study deeper soils were linked with higher mortality. 

Topographic variables as a category appeared to have very low explanatory power. 

Given that topographic characteristics such as slope (Greenwood and Weisberg 2008; Santos 

and Whitham 2010; Campbell et al. 2020), landscape position (Greenwood and Weisberg 2008) 
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and aspect (Ogle, Whitham, and Cobb 2000; Gitlin et al. 2006) have been identified as variables 

correlated with mortality in previous studies, it was somewhat surprising that topographic 

variables were such poor predictors of mortality in the models constructed. One possible 

explanation, however, is that these variables become more predictive at the microsite level, 

and the 210 m pixel spatial resolution of this study may have been too coarse to capture these 

finer scale variations. An interesting area for future study may be a multi-scale evaluation of 

topographic variables and their relation to drought related tree mortality. 

The presence of grazing as a land use, either alone or in combination with other 

variables, proved to have little or no relevance to mortality occurrence. This was somewhat 

surprising given the anecdotal accounts of grazing pressure being conducive to pinyon-juniper 

expansion. One caveat to this result, however, is that I determined grazing presence or absence 

only, based on the locations of grazing permits, and did not consider stocking rate in my 

analysis, as I had no way of easily obtaining this information for land leases in the study area. 

Also, a minimal portion of the study area (approximately 9 percent collectively) is Native 

American reservation land and thus may be grazed even though no public grazing permits exist 

in those area, thus potentially adding a small amount of noise to the dataset. 

While not helpful for building a predictive model, the lack of influence that grazing had 

is nonetheless a valuable finding. In a literature search I could find no studies that specifically 

considered the effects of grazing use on drought-related pinyon mortality, despite it being a 

common land use for this ecotype (Hartsell et al. 2020). It is hoped, therefore, that the results 

of this study contribute to rounding out the body of knowledge in that area.  
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5.4 Factors explaining pinyon mortality 

From among the 42 variables used in the modeling process, the top ten most explanatory, as 

indicated by the random forest variable importance measure of mean decrease in accuracy, 

included six climatic variables, one vegetation index, and three edaphic variables. In the final 

model built, only four variables, three of which were long-term climate averages, were needed 

for good prediction accuracy.  

 

5.4.1 Variables used in the final model 

The final model used three climatic variables: isothermality, minimum temperature of the 

coldest month, precipitation of the warmest quarter, and one vegetation index: NDMI. 

Isothermality and minimum temperature of the coldest month were the two most important 

variables across the models generated, and both were negatively correlated with mortality in all 

four Areas. In this study, the locations with smaller isothermality values had a diurnal 

temperature range similar to that of the surrounding areas, but a comparatively larger annual 

temperature range. It is unclear exactly why this would be such a strong predictor of mortality, 

however, increased temperature increases the VPD (Breshears et al. 2005; Weiss, Castro, and 

Overpeck 2009; Weiss, Betancourt, and Overpeck 2012; Clifford et al. 2013; Williams et al. 

2013) and has been shown to hasten death in pinyon pine (Adams et al. 2009); it may be that 

locations with historically larger seasonal variations in temperature to begin with were more 

exposed during the drought to the intensified warm and dry conditions. There is also a 

possibility, though not explored in this study, that these climatic characteristics were related 

not to increased tree vulnerability, but rather to the survival, reproduction, and vigor of the 
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local ips population. Since pinyon ips are poor dispersers (Raffa et al. 2008), it is conceivable 

that the areas with the most mortality may have occurred where the ips populations were 

initially highest. The connection between these climatic variables, the weather conditions 

leading up to the drought, and pinyon ips habitat suitability might make an interesting topic for 

future study. 

There was a positive relationship between mortality and precipitation of the warmest 

quarter in the three southernmost Areas, when this variable was considered in combination 

with other variables. This may indicate a heavier reliance on moisture from the North American 

monsoon, or it may simply indicate a generally wetter site, as this variable was highly correlated 

with annual precipitation, which was not included as a final variable. In either case, this positive 

correlation is in agreement with the findings of Lloret and Kitzberger (2018) who observed a 

high incidence of mortality during this drought in areas of historically high climatic suitability, 

which rapidly deteriorated during the drought period. They offer in explanation the proposal 

that perhaps trees growing under normally favorable conditions near the core of their 

suitability range are less able to cope with sudden climatic unsuitability when it occurs due to 

factors such as acclimation, stand density, and possibly even genetic differences, compared to 

those at less suitable edges of the climatic range. Work by Hacke et al. (2000) and Limousin et 

al. (2013) showing the ability for adaptive plasticity support this hypothesis. As an additional 

factor, the anomalously cool and wet conditions in much of the southwest during the early and 

latter parts of the 20th century (Breshears et al. 2005; Barger et al. 2009; Romme et al. 2009) 

may have contributed to pinyon growth and expansion beyond what is sustainable in the long 

term – a hypothesis proposed by several authors (Breshears et al. 2005; Jump et al. 2017; Flake 
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and Weisberg 2019), and a phenomenon termed by Jump et al. (2017) “structural overshoot.” 

Interestingly, when considered in univariate decision tree models (Appendix F), the relationship 

between precipitation of the warmest quarter and mortality was reversed: negative in the 

three southernmost Areas and positive only in the most northerly Area. This is illustrative of the 

complexity involved in modeling natural systems, a commonly acknowledged challenge in the 

research on pinyon mortality (Kerkhoff et al. 2004; Hicke and Zeppel 2013; McDowell et al. 

2013; Campbell et al. 2020). 

There was a generally positive correlation between mortality and NDMI, which is a 

representation of vegetation moisture content (Hardisky, Klemas, and Smart 1983; Hunt Jr and 

Rock 1989). This may suggest that trees with more favorable pre-drought moisture conditions 

were the hardest hit during the drought. More positive values of this index, however, are also 

representative of higher biomass, and may in this case be more indicative of higher pre-drought 

tree cover in areas of mortality. The NDMI has been shown elsewhere to be very useful for 

forest biomass change detection and more sensitive to light disturbances than NDVI (Jin and 

Sader 2005); however, this means its interpretation in this study is somewhat limited, as this 

index represents multiple interrelated features. Assuming, however, that NDMI values are in 

this study primarily indicative of cover, the positive association with mortality is in agreement 

with the conclusions of (Negrón and Wilson 2003; Greenwood and Weisberg 2008), though not 

those of (Floyd et al. 2009; Clifford, Cobb, and Buenemann 2011; Ganey and Vojta 2011; 

Clifford et al. 2013), and also conflicts somewhat with a qualitative assessment of patterns 

apparent from the mortality maps generated in the first step. One possible confounding factor, 

however, is that in this study all areas mapped as pinyon-juniper woodlands were considered 
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together, with no differentiation between species. Areas of higher pre-drought cover may have 

been more often dominated by pinyon, while areas of low cover may have been mostly at the 

warmer and drier end of the range and been primarily dominated by juniper (Koepke, Kolb, and 

Adams 2010), a species which underwent far less mortality during the drought (Mueller et al. 

2005; McDowell et al. 2008; Floyd et al. 2009). While some areas of low cover did appear from 

the maps generated to experience mortality, quantitatively these areas may have been 

proportionally less than mortality areas of higher initial cover. 

5.4.2 Other top variables 

Six of the ten variables that appeared to be most important across random forest models were 

climatic, one was the vegetation index NDMI, and three were edaphic. In addition to those 

variables included in the final model and discussed above, the other three climatic variables 

were temperature of the driest quarter, November precipitation, and seasonality of 

precipitation. The three edaphic variables that appeared to be consistently important in 

random forest models were clay content of the surface soil, weighted average clay percent of 

the soil profile, and AWC of the first 31 cm (top foot) of soil. 

November precipitation had a negative relationship to mortality in three of the four 

Areas. As suggested above in the discussion of isothermality, it could be that trees in locations 

predisposed to more climatic extremes, such as higher dry-season temperatures, were already 

operating closer to their functional limits and were therefore more vulnerable to additional 

drought stress, as is often the case with trees occupying generally suboptimal sites (Greenwood 

and Weisberg 2008). November precipitation may be representative more broadly of winter 

precipitation, which has been shown to be important for tree growth and for recharging the soil 
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profile (Phillips and Ehleringer 1995; West et al. 2007), so the generally negative relationship 

modeled in this study may indicate sites where pre-drought conditions were already 

suboptimal. These interpretations, however, are in opposition to the results of (Lloret and 

Kitzberger 2018) who observed that mortality was highest in areas of high climatic suitability, as 

discussed above.  

Seasonality of precipitation, while identified as an important variable, had an 

inconsistent direction of relationship in the four Areas, and this may have one of two possible 

interpretations: it could be that this variable represents a varying degree of dependence on 

monsoonal vs. winter precipitation, and that this relationship is influenced in part by other 

factors that differed between the Areas. A second possibility is that the relationships identified 

by the models were not actually meaningful and simply the result of chance. 

The edaphic variables that appeared to be consistently important in random forest 

models, clay content of the surface soil, weighted average clay percent of the soil profile, and 

AWC of the first 31 cm (top foot) of soil, all have a direct influence on soil water dynamics. 

Given this, their importance in modeling mortality was not unexpected, and is in agreement 

with observations made by Clifford et al. (2013). It was, however, unexpected that none of 

these factors produced consistent results when evaluated as univariate models in a decision 

tree environment (Appendix F), indicating that the influence of these variables is dependent on 

interactions with other site characteristics. This is not a finding that has been reported in other 

studies on drought-related pinyon mortality, although it could possibly be an explanation for 

some of the inconsistency in results between studies that is mentioned in the discussion of 

variable types. Despite the variety of models and modeling styles used, I was unable to pinpoint 
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the precise nature of these inferred relationships within the scope of this study. This would 

make an interesting topic for future study, however, as alluded to by many other authors (e.g., 

Kerkhoff et al. 2004; Hicke and Zeppel 2013; McDowell et al. 2013; Campbell et al. 2020), in 

some cases the complexity of the system being modeled makes it difficult to identify clear 

relationships. 

5.5 Final model performance and implications 

The high classification accuracy of the final selected model indicates that the four variables 

selected for the model explained mortality well, and this explanatory power was consistent 

across the four Areas. While the precise interactions of the four variables included in the final 

model could not be ascertained due to the nature of the random forest model, the model 

produced detailed mortality maps that had between 80 and 83 percent balanced accuracy using 

only these predictors. Locations of predicted mortality were a good match for the mortality 

mapped by the change detection analysis. This demonstrates that a high level of prediction 

accuracy can be obtained using only a few variables, and that such predictions can be made 

using a combination of long-term climatic averages and NDMI. This finding is significant from a 

land management perspective, as these variables can be considered in times of non-drought to 

identify sites most at risk for tree mortality during drought, and thus might help inform 

management decisions, such as identification of areas for a specific treatment, or to help guide 

post-disturbance land rehabilitation efforts. Additionally, data for all of these variables are 

readily available or easily calculable at no cost to the user, and require minimal processing and 

no additional field work to obtain. This could represent substantial cost and time savings to 
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land managers when compared with alternative, more labor-intensive approaches or data 

sources. Important to note, however, is that this modeling effort was undertaken for a single 

mortality event, and that is a limitation of this study. An illustrative example for the need to vet 

a model across multiple mortality events comes from a study by McDowell et al. (2013), who 

observed that a model which accurately predicted mortality of trees subjected to experimental 

drought in a study plot in NM circa 2008 (Plaut et al. 2012; Limousin et al. 2013), it incorrectly 

predicted mortality in control-plot trees during a subsequent record-setting drought occurring 

in the area only a few years later in 2011 (McDowell et al. 2013). McDowell et al. (2013) suggest 

the absence of a local bark beetle population explosion in 2011 as the possible explanatory 

factor for the model failure in the described case. Therefore to build confidence in the final 

model developed in this study, it would be helpful to test it on other mortality events in the 

region, and this could be an area for future study. 

6. Conclusion 

In this study, four bioclimatic variables combined in a random forest model were able to 

accurately predict tree mortality in all four Areas. This finding may be helpful to natural 

resource managers looking for a quick and cost-effective means of estimating mortality risk 

over large areas. These results come with the caveat, however, that this model has not been 

tested across multiple drought-related mortality events, and so cannot be extrapolated beyond 

the temporal and geographic limits of this study. In general, long term climatic averages were 

more predictive than other categories of variables, soils produced mixed results, topography in 
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isolation was a fairly poor predictor at the scale of the study, and grazing had no effect on 

mortality. The results of this study add to the academic body of knowledge on the subject and 

highlight several areas for future study that could build upon this work. Main limitations of this 

study were the inability to distinguish between pinyon-dominated and juniper-dominated sites, 

which may have influenced mortality patterns and relationships, and the fact that only one time 

period spanning a single drought period was examined.  

This study highlights several potential topics for future research. A multi-scale analysis 

of the influence of topography on mortality may shed some light on the generally poor 

correlations found in this study. Lloret and Kitzberger (2018) used historic and episodic climate 

suitability to explain drought related pinyon mortality; a potential topic for future study might 

be to further explore if there was an inverse effect on pinyon ips climatic suitability in areas 

with relatively lower isothermality values, given the correlation of these areas to mortality in 

this study. A deeper examination of edaphic variables and their relationships to other co-

occurring variables is another area for more exploration, and finally, testing the explanatory 

power of the variables used in final model across multiple mortality events would help establish 

if the relationships identified are generalizable to other occurrences of drought related pinyon 

mortality. 
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Table A1. Full set of potential explanatory variables considered n=136. For acronyms, see the List of Abbreviations. 

Type Layer name Variable description Unit Year Source Native 
resolution  

bioclimatic bio1.tif Annual Mean 
Temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio10.tif Mean Temperature 
of Warmest Quarter 
[°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio11.tif Mean Temperature 
of Coldest Quarter 
[°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio12.tif Annual Precipitation 
[mm/year] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio13.tif Precipitation of 
Wettest Month 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio14.tif Precipitation of 
Driest Month 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio15.tif Precipitation 
Seasonality 
[coefficient of 
variation] 

Coefficient 
of variation 

1979-
2013 

CHELSA 1 km 

bioclimatic bio16.tif Precipitation of 
Wettest Quarter 
[mm/quarter] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio17.tif Precipitation of 
Driest Quarter 
[mm/quarter] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio18.tif Precipitation of 
Warmest Quarter 
[mm/quarter] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio19 .tif Precipitation of 
Coldest Quarter 
[mm/quarter] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio2.tif Mean Diurnal Range 
[°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio3.tif Isothermality Unitless 1979-
2013 

CHELSA 1 km 

bioclimatic bio4.tif Temperature 
Seasonality [standard 
deviation] 

Unitless 1979-
2013 

CHELSA 1 km 

bioclimatic bio5.tif Max Temperature of 
Warmest Month [°C] 

°C/10 1979-
2013 

CHELSA 1 km 
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Type Layer name Variable description Unit Year Source Native 
resolution  

bioclimatic bio6.tif Min Temperature of 
Coldest Month [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio7.tif Temperature Annual 
Range [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio8.tif Mean Temperature 
of Wettest Quarter 
[°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio9.tif Mean Temperature 
of Driest Quarter [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bioppapr.tif Apr precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppaug.tif Aug precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppdec.tif Dec precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppfeb.tif Feb precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppjan.tif Jan precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppjul.tif Jul precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppjun.tif Jun precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppmar.tif Mar precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppmay.tif May precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppnov.tif Nov precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppoct.tif Oct precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bioppsep.tif Sep precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic biotempapr.tif Apr monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempaug.tif Aug monthly mean 
of daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 
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Type Layer name Variable description Unit Year Source Native 
resolution  

bioclimatic biotempdec.tif Dec monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempfeb.tif Feb monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempjan.tif Jan monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempjul.tif Jul monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempjun.tif Jun monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempmar.tif Mar monthly mean 
of daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempmay.tif May monthly mean 
of daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempnov.tif Nov monthly mean 
of daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempoct.tif Oct monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotempsep.tif Sep monthly mean of 
daily mean 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxapr.tif Apr monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxaug.tif Aug monthly mean 
of daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxdec.tif Dec monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxfeb.tif Feb monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 
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Type Layer name Variable description Unit Year Source Native 
resolution  

bioclimatic biotmaxjan.tif Jan monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxjul.tif Jul monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxjun.tif Jun monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxmar.tif Mar monthly mean 
of daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxmay.tif May monthly mean 
of daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxnov.tif Nov monthly mean 
of daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxoct.tif Oct monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmaxsep.tif Sep monthly mean of 
daily maximum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminapr.tif Apr monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminaug.tif Aug monthly mean 
of daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotmindec.tif Dec monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminfeb.tif Feb monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminjan.tif Jan monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminjul.tif Jul monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 
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Type Layer name Variable description Unit Year Source Native 
resolution  

bioclimatic biotminjun.tif Jun monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminmar.tif Mar monthly mean 
of daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminmay.tif May monthly mean 
of daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminnov.tif Nov monthly mean 
of daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminoct.tif Oct monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic biotminsep.tif Sep monthly mean of 
daily minimum 
temperature [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic soradapr.tif Apr Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradaug.tif Aug Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradec.tif Dec Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradfeb.tif Feb Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradjan.tif Jan Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradjul.tif Jul Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradjun.tif Jun Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradmar.tif Mar Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 
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Type Layer name Variable description Unit Year Source Native 
resolution  

bioclimatic soradmay.tif May Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradnov.tif Nov Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradoct.tif Oct Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradsep.tif Sep Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

bioclimatic soradyr.tif Area Solar Radiation 
(whole year) -2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

topographic cos_nm.tif Slope/aspect 
transformation 
based on cos method 

Index -1 to 1 2000 SRTM 30 m 

topographic cti_nm.tif Compound 
topographic index, 
also known as 
topographic wetness 
index 

Index 2000 SRTM 30 m 

topographic curv_nm.tif Slope curvature 
standard 

(1/100) of a 
z-unit 

2000 SRTM 30 m 

topographic curvpla_nm.tif Slope curvature 
planar 

(1/100) of a 
z-unit 

2000 SRTM 30 m 

topographic curvpro_nm.tif Slope curvature 
profile 

(1/100) of a 
z-unit 

2000 SRTM 30 m 

topographic diss_nm.tif Dissection Index 2000 SRTM 30 m 

topographic east_nm.tif Aspect - eastness Index -1 to 1 2000 SRTM 30 m 

topographic imi_nm.tif Integrated moisture 
index 

Index 2000 SRTM 30 m 

topographic ldform_nm.tif Landform curvature Index 2000 SRTM 30 m 

topographic north_nm.tif Aspect - northness Index -1 to 1 2000 SRTM 30 m 

topographic rough_nm.tif Roughness Index 2000 SRTM 30 m 

topographic sar_nm.tif Surface area ratio Index 2000 SRTM 30 m 

topographic sds_nm.tif Second derivative 
slope 

2nd 
derivate of 
slope 

2000 SRTM 30 m 

topographic sei_nm.tif Site exposure index Index 2000 SRTM 30 m 
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Type Layer name Variable description Unit Year Source Native 
resolution  

topographic sin_nm.tif Slope/aspect 
transformation 
based on sin method 

Index -1 to 1 2000 SRTM 30 m 

topographic slopd_nm.tif Slope degrees, planar 
method 

Degrees 2000 SRTM 30 m 

topographic slppos_nm.tif Slope position, based 
on 3 x 3 window 

Index 0 to 
100 

2000 SRTM 30 m 

topographic srr_nm.tif Surface relief ratio Index 2000 SRTM 30 m 

topographic srtm_elev.tif Elevation  Meters 2000 SRTM 30m 

topographic trasp_nm.tif Slope/aspect 
transformation 
based on 
topographic 
radiation aspect 

Index 0 to 1 2000 SRTM 30 m 

edaphic soawcft1.tif Available water 
holding capacity 
(AWC) 0-31 cm (~0 to 
1 ft) 

Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soawcft2.tif Available water 
holding capacity 
(AWC) 32-61 cm (~1 
ft to 2 ft) 

Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soawcft3.tif Available water 
holding capacity 
(AWC) 62-91 cm (~2 
ft to 3 ft) 

Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soawcft4.tif Available water 
holding capacity 
(AWC) 91-122 cm (~3 
ft to 4 ft) 

Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soawctot.tif Available water 
holding capacity 
(AWC) of top 122 cm 

Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclayft1.tif Estimated clay 
percentage 
(averaged) 0-31 cm 
(~0 to 1 ft) 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclayft2.tif Estimated clay 
percentage 
(averaged) 32-61 cm 
(~1 ft to 2 ft) 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 
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Type Layer name Variable description Unit Year Source Native 
resolution  

edaphic soclayft3.tif Estimated clay 
percentage 
(averaged) 62-91 cm 
(~2 ft to 3 ft) 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclayft4.tif Estimated clay 
percentage 
(averaged) 92-122 
cm (~3 ft to 4 ft) 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclayhz.tif Presence of a 
subsurface clay 
horizon at any depth 
within described 
profile 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclaytot.tif Estimated clay 
percentage 
(averaged) of top 122 
cm 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodepth.tif Soil depth Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrexd.tif Drainage-class: 
Excessively drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrmwd.tif Drainage-class: 
Moderately well 
drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrsexd.tif Drainage-class: 
Somewhat 
excessively drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrwd.tif Drainage-class: Well 
drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopmcal.tif Parent material: 
calcareous (dummy-
coded) 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsashci.tif soil particle-size 
class: miscellaneous 
ashy & cindery  

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 
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Type Layer name Variable description Unit Year Source Native 
resolution  

edaphic sopscol.tif soil particle-size 
class: coarse-loamy 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopscsk.tif soil particle-size 
class: clayey-skeletal 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsf.tif soil particle-size 
class: fine 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsfl.tif soil particle-size 
class: fine-loamy 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsfsi.tif soil particle-size 
class: fine-silty 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsl.tif soil particle-size 
class: loamy  

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopslsk.tif soil particle-size 
class: loamy-skeletal  

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopss.tif soil particle-size 
class: sandy 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sorlpres.tif soil unit with 
presence of root-
restrictive layer 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soshzO.tif surface texture: 
organic 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sosrfclpct.tif clay percent of 
surface texture 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 
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Type Layer name Variable description Unit Year Source Native 
resolution  

edaphic sostxbr.tif surface texture: 
bedrock 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sostxco.tif surface texture 
group: coarse 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sostxm.tif surface texture 
group: medium 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sostxmco.tif surface texture 
group: moderately 
coarse 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

vegetation ndmi2000.tif Pre-drought NDMI Numerical -
1 to 1 

2000 Landsat 
5 TM 

30 m 

vegetation ndvi2000.tif Pre-drought NDVI Numerical -
1 to 1 

2000 Landsat 
5 TM 

30 m 

anthropogenic hugrazall.tif Grazing Allotment 
(dummy-coded) 

Meters Multiple: 
2000-
2016 

USFS, 
BLM, 
SLO 

Variable 
(polygon 
datasets) 
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Table A2. Final set of potential explanatory variables after removing correlated and collinear variables n=42. For 
acronyms, see the List of Abbreviations. 

Type Layer name Variable description Unit Year Source Native 
Resolution  

bioclimatic bio15.tif Precipitation 
Seasonality 
[coefficient of 
variation] 

Coefficient 
of variation 

1979-
2013 

CHELSA 1 km 

bioclimatic bio18.tif Precipitation of 
Warmest Quarter 
[mm/quarter] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic bio3.tif Isothermality Unitless 1979-
2013 

CHELSA 1 km 

bioclimatic bio6.tif Min Temperature of 
Coldest Month [°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bio9.tif Mean Temperature 
of Driest Quarter 
[°C] 

°C/10 1979-
2013 

CHELSA 1 km 

bioclimatic bioppnov.tif Nov precipitation 
[mm/month] 

Millimeters 1979-
2013 

CHELSA 1 km 

bioclimatic soradmay.tif May Area Solar 
Radiation - 2002 

Watt hours 
per square 
meter 

2002 SRTM 30 m 

topographic cti_nm.tif Compound 
topographic index, 
also known as 
topographic 
wetness index 

Index 2000 SRTM 30 m 

topographic curvpro_nm.tif Slope curvature 
profile 

(1/100) of a 
z-unit 

2000 SRTM 30 m 

topographic imi_nm.tif Integrated moisture 
index 

Index 2000 SRTM 30 m 

topographic sar_nm.tif Surface area ratio Index 2000 SRTM 30 m 

topographic sds_nm.tif Second derivative 
slope 

2nd derivate 
of slope 

2000 SRTM 30 m 

topographic sei_nm.tif Site exposure index Index 2000 SRTM 30 m 

topographic sin_nm.tif Slope/aspect 
transformation 
based on sin 
method 

Index -1 to 1 2000 SRTM 30 m 

topographic srr_nm.tif Surface relief ratio Index 2000 SRTM 30 m 
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Type Layer name Variable description Unit Year Source Native 
Resolution  

topographic trasp_nm.tif Slope/aspect 
transformation 
based on 
topographic 
radiation aspect 

Index 0 to 1 2000 SRTM 30 m 

edaphic soawcft1.tif Available water 
holding capacity 
(AWC) 0-31 cm (~0 
to 1 ft) 

Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclayft3.tif Estimated clay 
percentage 
(averaged) 62-91 
cm (~2 ft to 3 ft) 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclayhz.tif Presence of a 
subsurface clay 
horizon at any 
depth within 
described profile 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soclaytot.tif Estimated clay 
percentage 
(averaged) of top 
122 cm 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodepth.tif Soil depth Centimeters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrexd.tif Drainage-class: 
Excessively drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrmwd.tif Drainage-class: 
Moderately well 
drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrsexd.tif Drainage-class: 
Somewhat 
excessively drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sodrwd.tif Drainage-class: Well 
drained 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 
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Type Layer name Variable description Unit Year Source Native 
Resolution  

edaphic sopmcal.tif Parent material: 
calcareous (dummy-
coded) 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsashci.tif soil particle-size 
class: miscellaneous 
ashy & cindery  

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopscol.tif soil particle-size 
class: coarse-loamy 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopscsk.tif soil particle-size 
class: clayey-
skeletal 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsf.tif soil particle-size 
class: fine 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsfl.tif soil particle-size 
class: fine-loamy 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsfsi.tif soil particle-size 
class: fine-silty 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopsl.tif soil particle-size 
class: loamy  

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopslsk.tif soil particle-size 
class: loamy-
skeletal  

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sopss.tif soil particle-size 
class: sandy 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic soshzO.tif surface texture: 
organic 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 
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Type Layer name Variable description Unit Year Source Native 
Resolution  

edaphic sosrfclpct.tif clay percent of 
surface texture 

Percentage Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sostxbr.tif surface texture: 
bedrock 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sostxm.tif surface texture 
group: medium 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

edaphic sostxmco.tif surface texture 
group: moderately 
coarse 

Meters Multiple 
years: 
1999-
2016 

NRCS, 
USFS 

Variable 
(County 
level soil 
surveys) 

vegetation ndmi2000.tif Pre-drought NDMI Numerical -
1 to 1 

2000 Landsat 
5 TM 

30 m 

anthropogenic hugrazall.tif Grazing Allotment 
(dummy-coded) 

Meters Multiple: 
2000-
2016 

USFS, 
BLM, 
SLO 

Variable 
(polygon 
datasets) 

 

  



150 

Appendix B: Python code for calculating soil properties 
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#script to convert horizion by horizon awc and clay content data into cm by cm for the entire 
soil profile, and at the same time truncate all data at 122 cm 
 
import csv 
 
with open('TH_awc_clay_in_nm600.csv', 'r') as e: 
    soilreader = csv.reader(e, delimiter = ',') 
    musym = [] 
    soilnames = [] 
    hzb = [] 
    awc = [] 
    clay = [] 
    for row in soilreader: 
      musym.append(row[0]) 
      soilnames.append(row[2]) 
      hzb.append(int(row[3])) 
      awc.append(float(row[4])) 
      clay.append(float(row[5])) 
 
soilmusym = {} #holds the map unit symbol and soil component name 
soilhzdepthb = {} #holds the horizon bottom depths as a list for each component key 
soilawc = {} #holds the awc associated with each horizon as a list for each component key 
soilclay = {} #holds the clay content associated with each horizon as a list for each component key 
 
 
#adds musym and soil names to soilmusym dictionary, initializes component key to empty list for other 
dictionaries. 
for index, key in enumerate(musym):  
  if key not in soilmusym: 
    soilmusym[key] = soilnames[index] 
    soilhzdepthb[key] = [] 
    soilawc[key] = [] 
    soilclay[key] = [] 
 
#adds values to dictionary lists 
for index, key in enumerate(musym): 
  soilhzdepthb[key].append(hzb[index]) 
  soilawc[key].append(awc[index]) 
  soilclay[key].append(clay[index]) 
 
 
def extract(soilhzb): 
  # extracts the cm by cm values for awc & clay content for a single soil component 
  i = 1 
  for index, depth in enumerate(soilhzb): 
      while i <= depth: 
        if i > 122: 
          break 
        else: 
          row = [soil, soilmusym[soil], i, soilawc[soil][index], soilclay[soil][index]] 
          soilwriter.writerow(row) 
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        i += 1 
 
#do not write header to file, but header = (musym, soilname, cm, awc, claypct) 
 
with open('NM600_awc_clay_out.csv', 'w', newline='') as out: 
  soilwriter = csv.writer(out) 
  # iterates through the list of soils, executing the extract function for each one 
  for soil in soilhzdepthb: 
    extract(soilhzdepthb[soil]) 
 
#=========================================== 
#script to convert horizion by horizon awc and clay content data into cm by cm for the first foot of the soil profile. 
Essentially the same script was used for each 1-foot increment of the profile, simply changing the start and end 
depths. 
 
import csv 
 
with open('TH_awc_clay_in_nm600.csv', 'r') as e: 
    soilreader = csv.reader(e, delimiter = ',') 
    musym = [] 
    soilnames = [] 
    hzb = [] 
    awc = [] 
    clay = [] 
    for row in soilreader: 
      musym.append(row[0]) 
      soilnames.append(row[2]) 
      hzb.append(int(row[3])) 
      awc.append(float(row[4])) 
      clay.append(float(row[5])) 
 
soilmusym = {} #holds the map unit symbol and soil component name 
soilhzdepthb = {} #holds the horizon bottom depths as a list for each component key 
soilawc = {} #holds the awc associated with each horizon as a list for each component key 
soilclay = {} #holds the clay content associated with each horizon as a list for each component key 
 
 
#adds musym and soil names to soilmusym dictionary, initializes component key to empty list for other 
dictionaries. 
for index, key in enumerate(musym):  
  if key not in soilmusym: 
    soilmusym[key] = soilnames[index] 
    soilhzdepthb[key] = [] 
    soilawc[key] = [] 
    soilclay[key] = [] 
 
#adds values to dictionary lists 
for index, key in enumerate(musym): 
  soilhzdepthb[key].append(hzb[index]) 
  soilawc[key].append(awc[index]) 
  soilclay[key].append(clay[index]) 
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def extract(soilhzb): 
  # extracts the cm by cm values for awc & clay content for a single soil component 
  i = 1 
  for index, depth in enumerate(soilhzb): 
      while i <= depth: 
        if i > 31: 
          break 
        else: 
          row = [soil, soilmusym[soil], i, soilawc[soil][index], soilclay[soil][index]] 
          soilwriter.writerow(row) 
 
        i += 1 
 
#do not write header to file, but header = (musym, soilname, cm, awc, clay content) 
 
with open('NM600_awc_clay_out_ft1.csv', 'w', newline='') as out: 
  soilwriter = csv.writer(out) 
  # iterates through the list of soils, executing the extract function for each one 
  for soil in soilhzdepthb: 
    extract(soilhzdepthb[soil]) 
 
#=========================================== 
#script to sum the awc and compute the average clay content across a given soil depth interval (either 1 foot 
increment or the whole profile, depending on the input data) 
 
import csv 
 
with open('NM600_awc_clay_out_ft4.csv', 'r') as e: 
    soilreader = csv.reader(e, delimiter = ',') 
    musym = [] 
    soilnames = [] 
    soildep = [] 
    awc = [] 
    clay = [] 
    for row in soilreader: 
      musym.append(row[0]) 
      soilnames.append(row[1]) 
      soildep.append(int(row[2])) 
      awc.append(float(row[3])) 
      clay.append(float(row[4])) 
 
soilmusym = {} #holds the component key and soil component name 
soildepth = {} #holds the horizon bottom depths as a list for each component key 
soilawc = {} #holds the awc associated with each horizon as a list for each component key 
soilclay = {} #holds the clay content associated with each horizon as a list for each component key 
 
#adds musym and soil names to soilmusym dictionary, initializes component musym to empty list for other 
dictionaries. 
for index, key in enumerate(musym):  
  if key not in soilmusym: 
    soilmusym[key] = soilnames[index] 
    soildepth[key] = 0 
    soilawc[key] = 0 
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    soilclay[key] = 0 
 
#adds values to dictionary lists 
for index, key in enumerate(musym): 
  soildepth[key] += 1 
  soilawc[key] += awc[index] 
  soilclay[key] += clay[index] 
 
def soilsum(sum): 
  row = [soil, soilmusym[soil], soilawc[soil], round((soilclay[soil]/soildepth[soil]),2)] 
  soilwriter.writerow(row) 
 
def header(): 
  headerow = ["musym", "component", "awcft4", "clayavgft4"] 
  soilwriter.writerow(headerow) 
 
with open('NM600_awc_clay_out_sum_ft4.csv', 'w', newline='') as out: 
  soilwriter = csv.writer(out) 
  #writes header row 
  header() 
 
  #iterates through the list of soils, executing the extract function for each one 
  for soil in soilmusym: 
    soilsum(soilmusym[soil]) 
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Appendix C: Correlation matrices and variance inflation factors of 

potential explanatory variables 
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Table C1. Pearson’s correlation coefficients for all climatic variables (n=67).  

 bio1 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 

bio1 1.000           
bio10 0.991 1.000          
bio11 0.989 0.961 1.000         
bio12 -0.295 -0.358 -0.220 1.000        
bio13 -0.104 -0.178 -0.022 0.904 1.000       
bio14 -0.500 -0.510 -0.482 0.759 0.463 1.000      
bio15 0.364 0.308 0.418 -0.014 0.395 -0.586 1.000     
bio16 -0.132 -0.212 -0.043 0.900 0.995 0.440 0.415 1.000    
bio17 -0.512 -0.520 -0.497 0.759 0.466 0.990 -0.590 0.441 1.000   
bio18 -0.342 -0.421 -0.244 0.857 0.878 0.438 0.316 0.912 0.430 1.000  
bio19 -0.492 -0.485 -0.496 0.710 0.419 0.960 -0.615 0.387 0.978 0.364 1.000 

bio2 -0.781 -0.736 -0.808 -0.064 -0.277 0.259 -0.465 -0.242 0.264 0.035 0.250 

bio3 0.063 -0.065 0.202 0.430 0.503 0.051 0.407 0.546 0.029 0.598 -0.081 

bio4 0.208 0.334 0.063 -0.548 -0.583 -0.200 -0.326 -0.629 -0.184 -0.696 -0.064 

bio5 0.958 0.986 0.910 -0.426 -0.266 -0.517 0.233 -0.303 -0.525 -0.502 -0.479 

bio6 0.966 0.926 0.990 -0.140 0.068 -0.442 0.462 0.048 -0.458 -0.161 -0.461 

bio7 -0.477 -0.363 -0.590 -0.332 -0.500 0.108 -0.543 -0.513 0.127 -0.400 0.196 

bio8 0.986 0.999 0.952 -0.372 -0.197 -0.512 0.292 -0.231 -0.522 -0.438 -0.485 

bio9 0.649 0.649 0.633 -0.165 -0.089 -0.235 0.114 -0.114 -0.225 -0.266 -0.157 

bioppapr -0.563 -0.596 -0.512 0.847 0.599 0.840 -0.382 0.609 0.854 0.684 0.809 

bioppaug -0.101 -0.176 -0.019 0.904 1.000 0.464 0.394 0.994 0.467 0.876 0.420 

bioppdec -0.258 -0.270 -0.251 0.693 0.437 0.866 -0.498 0.405 0.870 0.359 0.899 

bioppfeb -0.469 -0.499 -0.429 0.837 0.572 0.963 -0.479 0.558 0.970 0.551 0.928 

bioppjan -0.563 -0.548 -0.572 0.671 0.383 0.942 -0.626 0.354 0.962 0.343 0.979 

bioppjul -0.187 -0.274 -0.086 0.865 0.953 0.379 0.446 0.979 0.376 0.953 0.310 

bioppjun -0.046 -0.138 0.061 0.878 0.880 0.435 0.248 0.896 0.423 0.865 0.346 

bioppmar -0.464 -0.469 -0.455 0.753 0.470 0.934 -0.561 0.447 0.954 0.443 0.959 

bioppmay -0.374 -0.445 -0.279 0.897 0.771 0.643 -0.039 0.792 0.624 0.850 0.538 

bioppnov -0.500 -0.473 -0.522 0.608 0.300 0.920 -0.673 0.265 0.921 0.261 0.944 

bioppoct -0.119 -0.147 -0.090 0.890 0.749 0.782 -0.191 0.716 0.782 0.609 0.777 

bioppsep -0.014 -0.090 0.068 0.921 0.911 0.576 0.178 0.900 0.558 0.795 0.500 

biotempapr 0.998 0.983 0.993 -0.269 -0.071 -0.492 0.387 -0.099 -0.504 -0.312 -0.486 
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  

 bio1 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 

biotempaug 0.987 0.999 0.954 -0.369 -0.194 -0.512 0.295 -0.227 -0.522 -0.435 -0.485 

biotempdec 0.994 0.973 0.998 -0.242 -0.046 -0.487 0.401 -0.070 -0.502 -0.277 -0.496 

biotempfeb 0.991 0.966 0.998 -0.229 -0.029 -0.480 0.413 -0.053 -0.494 -0.259 -0.487 

biotempjan 0.985 0.955 0.999 -0.209 -0.010 -0.479 0.426 -0.030 -0.495 -0.227 -0.495 

biotempjul 0.985 0.999 0.949 -0.376 -0.202 -0.512 0.289 -0.236 -0.521 -0.445 -0.483 

biotempjun 0.998 0.996 0.978 -0.321 -0.134 -0.502 0.342 -0.165 -0.513 -0.379 -0.484 

biotempmar 0.998 0.982 0.995 -0.263 -0.066 -0.491 0.389 -0.093 -0.504 -0.305 -0.489 

biotempmay 0.999 0.988 0.989 -0.286 -0.092 -0.495 0.372 -0.121 -0.506 -0.334 -0.485 

biotempnov 0.999 0.987 0.992 -0.287 -0.095 -0.503 0.373 -0.121 -0.516 -0.326 -0.501 

biotempoct 0.998 0.996 0.981 -0.322 -0.136 -0.508 0.343 -0.166 -0.519 -0.372 -0.494 

biotempsep 0.993 0.999 0.965 -0.351 -0.172 -0.507 0.311 -0.204 -0.518 -0.413 -0.485 

biotmaxapr 0.995 0.975 0.995 -0.252 -0.053 -0.487 0.400 -0.079 -0.500 -0.286 -0.486 

biotmaxaug 0.967 0.990 0.924 -0.411 -0.248 -0.519 0.250 -0.283 -0.528 -0.482 -0.486 

biotmaxdec 0.991 0.981 0.984 -0.319 -0.137 -0.518 0.350 -0.160 -0.532 -0.345 -0.524 

biotmaxfeb 0.993 0.978 0.992 -0.295 -0.106 -0.511 0.374 -0.129 -0.524 -0.318 -0.515 

biotmaxjan 0.983 0.970 0.981 -0.315 -0.136 -0.521 0.353 -0.156 -0.537 -0.329 -0.534 

biotmaxjul 0.958 0.986 0.909 -0.426 -0.267 -0.517 0.233 -0.303 -0.525 -0.502 -0.479 

biotmaxjun 0.995 0.998 0.971 -0.337 -0.152 -0.504 0.327 -0.185 -0.514 -0.398 -0.483 

biotmaxmar 0.995 0.975 0.995 -0.270 -0.075 -0.499 0.391 -0.099 -0.512 -0.296 -0.502 

biotmaxmay 0.998 0.987 0.989 -0.282 -0.088 -0.491 0.375 -0.117 -0.504 -0.329 -0.482 

biotmaxnov 0.996 0.978 0.996 -0.266 -0.075 -0.497 0.388 -0.098 -0.511 -0.293 -0.501 

biotmaxoct 0.998 0.994 0.982 -0.322 -0.139 -0.508 0.342 -0.167 -0.521 -0.367 -0.499 

biotmaxsep 0.987 0.998 0.956 -0.370 -0.198 -0.514 0.293 -0.229 -0.525 -0.431 -0.492 

biotminapr 0.999 0.989 0.989 -0.287 -0.091 -0.497 0.372 -0.121 -0.508 -0.340 -0.487 

biotminaug 0.996 0.998 0.972 -0.330 -0.146 -0.502 0.329 -0.178 -0.512 -0.392 -0.481 

biotmindec 0.983 0.954 0.995 -0.186 0.019 -0.460 0.433 -0.005 -0.475 -0.225 -0.470 

biotminfeb 0.980 0.948 0.994 -0.178 0.028 -0.455 0.439 0.004 -0.469 -0.212 -0.463 

biotminjan 0.966 0.926 0.990 -0.140 0.068 -0.442 0.462 0.048 -0.458 -0.161 -0.461 

biotminjul 0.996 0.998 0.972 -0.330 -0.145 -0.501 0.330 -0.178 -0.511 -0.392 -0.478 

biotminjun 0.999 0.994 0.983 -0.306 -0.115 -0.499 0.356 -0.145 -0.510 -0.359 -0.483 

biotminmar 0.996 0.983 0.990 -0.256 -0.058 -0.481 0.385 -0.087 -0.493 -0.313 -0.475 

biotminmay 0.999 0.990 0.989 -0.290 -0.097 -0.497 0.369 -0.126 -0.509 -0.338 -0.487 

biotminnov 0.997 0.992 0.984 -0.306 -0.115 -0.506 0.356 -0.145 -0.518 -0.357 -0.497 

biotminoct 0.998 0.997 0.979 -0.323 -0.134 -0.507 0.343 -0.166 -0.517 -0.378 -0.489 

biotminsep 0.995 0.998 0.971 -0.333 -0.149 -0.502 0.328 -0.181 -0.512 -0.396 -0.479 
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  

 bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bioppapr bioppaug bioppdec 

bio1            
bio10            
bio11            
bio12            
bio13            
bio14            
bio15            
bio16            
bio17            
bio18            
bio19            
bio2 1.000           
bio3 -0.259 1.000          
bio4 0.112 -0.932 1.000         
bio5 -0.649 -0.212 0.464 1.000        
bio6 -0.862 0.295 -0.035 0.855 1.000       
bio7 0.715 -0.853 0.718 -0.209 -0.686 1.000      
bio8 -0.718 -0.097 0.363 0.991 0.912 -0.329 1.000     
bio9 -0.508 0.000 0.181 0.628 0.619 -0.288 0.645 1.000    
bioppapr 0.335 0.236 -0.402 -0.615 -0.468 0.021 -0.599 -0.299 1.000   
bioppaug -0.280 0.501 -0.581 -0.264 0.070 -0.500 -0.194 -0.087 0.597 1.000  
bioppdec 0.007 0.097 -0.127 -0.309 -0.193 -0.069 -0.281 -0.023 0.682 0.439 1.000 

bioppfeb 0.190 0.196 -0.342 -0.528 -0.376 -0.032 -0.506 -0.166 0.900 0.573 0.841 

bioppjan 0.343 -0.156 -0.031 -0.524 -0.550 0.302 -0.544 -0.206 0.812 0.384 0.799 

bioppjul -0.162 0.616 -0.701 -0.367 0.004 -0.520 -0.293 -0.165 0.609 0.952 0.325 

bioppjun -0.283 0.630 -0.710 -0.229 0.144 -0.590 -0.155 -0.063 0.636 0.879 0.372 

bioppmar 0.246 0.033 -0.147 -0.479 -0.415 0.111 -0.472 -0.144 0.882 0.470 0.874 

bioppmay 0.097 0.484 -0.650 -0.495 -0.220 -0.279 -0.454 -0.286 0.818 0.769 0.459 

bioppnov 0.345 -0.215 0.075 -0.441 -0.511 0.344 -0.467 -0.226 0.725 0.302 0.831 

bioppoct -0.175 0.193 -0.231 -0.196 -0.026 -0.226 -0.158 -0.037 0.743 0.751 0.830 

bioppsep -0.347 0.520 -0.565 -0.182 0.157 -0.551 -0.109 -0.037 0.608 0.912 0.597 

biotempapr -0.804 0.110 0.162 0.941 0.978 -0.523 0.976 0.649 -0.551 -0.069 -0.242 

 
  



159 

Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  

 bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bioppapr bioppaug bioppdec 

biotempaug -0.719 -0.092 0.357 0.991 0.914 -0.334 1.000 0.645 -0.597 -0.191 -0.281 

biotempdec -0.805 0.151 0.110 0.928 0.984 -0.552 0.965 0.637 -0.528 -0.044 -0.259 

biotempfeb -0.815 0.188 0.083 0.914 0.990 -0.585 0.957 0.641 -0.523 -0.027 -0.235 

biotempjan -0.808 0.225 0.042 0.900 0.992 -0.607 0.945 0.630 -0.504 -0.008 -0.246 

biotempjul -0.716 -0.107 0.372 0.992 0.909 -0.321 0.999 0.645 -0.602 -0.199 -0.279 

biotempjun -0.772 0.009 0.264 0.970 0.952 -0.435 0.993 0.652 -0.581 -0.131 -0.252 

biotempmar -0.804 0.117 0.151 0.940 0.979 -0.528 0.975 0.647 -0.546 -0.064 -0.249 

biotempmay -0.795 0.079 0.196 0.951 0.971 -0.497 0.982 0.651 -0.562 -0.090 -0.241 

biotempnov -0.776 0.087 0.181 0.952 0.969 -0.492 0.982 0.645 -0.554 -0.093 -0.271 

biotempoct -0.760 0.019 0.253 0.970 0.953 -0.435 0.993 0.649 -0.576 -0.134 -0.267 

biotempsep -0.738 -0.051 0.320 0.984 0.931 -0.374 0.998 0.648 -0.590 -0.170 -0.268 

biotmaxapr -0.807 0.153 0.125 0.926 0.984 -0.556 0.966 0.646 -0.540 -0.051 -0.231 

biotmaxaug -0.664 -0.177 0.431 0.999 0.872 -0.243 0.995 0.632 -0.609 -0.246 -0.309 

biotmaxdec -0.716 0.078 0.192 0.955 0.950 -0.452 0.978 0.635 -0.555 -0.135 -0.311 

biotmaxfeb -0.746 0.130 0.149 0.940 0.968 -0.507 0.972 0.643 -0.549 -0.103 -0.281 

biotmaxjan -0.694 0.105 0.165 0.944 0.946 -0.460 0.968 0.626 -0.544 -0.134 -0.325 

biotmaxjul -0.649 -0.212 0.464 1.000 0.855 -0.209 0.991 0.628 -0.615 -0.264 -0.309 

biotmaxjun -0.759 -0.023 0.294 0.977 0.942 -0.405 0.996 0.650 -0.590 -0.150 -0.256 

biotmaxmar -0.776 0.152 0.128 0.931 0.978 -0.539 0.968 0.645 -0.541 -0.073 -0.257 

biotmaxmay -0.798 0.088 0.190 0.947 0.973 -0.505 0.980 0.651 -0.560 -0.085 -0.233 

biotmaxnov -0.778 0.143 0.135 0.935 0.978 -0.533 0.971 0.641 -0.539 -0.072 -0.256 

biotmaxoct -0.750 0.031 0.244 0.968 0.953 -0.438 0.991 0.645 -0.572 -0.137 -0.269 

biotmaxsep -0.711 -0.082 0.349 0.990 0.915 -0.336 0.999 0.642 -0.596 -0.195 -0.287 

biotminapr -0.798 0.064 0.201 0.955 0.969 -0.487 0.984 0.650 -0.563 -0.089 -0.255 

biotminaug -0.762 -0.018 0.290 0.976 0.944 -0.411 0.995 0.651 -0.583 -0.144 -0.253 

biotmindec -0.857 0.201 0.052 0.898 0.994 -0.615 0.944 0.629 -0.503 0.022 -0.219 

biotminfeb -0.859 0.230 0.033 0.886 0.997 -0.638 0.936 0.635 -0.499 0.031 -0.201 

biotminjan -0.862 0.295 -0.035 0.855 1.000 -0.686 0.912 0.619 -0.468 0.070 -0.193 

biotminjul -0.764 -0.017 0.291 0.975 0.944 -0.412 0.995 0.652 -0.584 -0.143 -0.250 

biotminjun -0.783 0.039 0.235 0.962 0.961 -0.462 0.989 0.653 -0.572 -0.112 -0.246 

biotminmar -0.826 0.083 0.172 0.944 0.975 -0.515 0.977 0.645 -0.548 -0.055 -0.241 

biotminmay -0.791 0.070 0.203 0.954 0.969 -0.488 0.984 0.651 -0.563 -0.094 -0.248 

biotminnov -0.773 0.029 0.229 0.966 0.956 -0.447 0.989 0.646 -0.568 -0.113 -0.284 

biotminoct -0.768 0.007 0.262 0.972 0.951 -0.430 0.993 0.652 -0.579 -0.132 -0.265 

biotminsep -0.763 -0.022 0.294 0.976 0.943 -0.408 0.996 0.652 -0.584 -0.146 -0.252 
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  
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un 
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biotem
paug 

bio1            
bio10            
bio11            
bio12            
bio13            
bio14            
bio15            
bio16            
bio17            
bio18            
bio19            
bio2            
bio3            
bio4            
bio5            
bio6            
bio7            
bio8            
bio9            
bioppapr            
bioppaug            
bioppdec            
bioppfeb 1.000           
bioppjan 0.908 1.000          
bioppjul 0.510 0.283 1.000         
bioppjun 0.566 0.311 0.900 1.000        
bioppmar 0.940 0.934 0.387 0.413 1.000       
bioppmay 0.716 0.538 0.810 0.895 0.577 1.000      
bioppnov 0.827 0.936 0.184 0.226 0.887 0.487 1.000     
bioppoct 0.805 0.703 0.624 0.687 0.803 0.683 0.718 1.000    
bioppsep 0.654 0.424 0.849 0.905 0.528 0.814 0.416 0.855 1.000   
biotempapr -0.453 -0.563 -0.154 -0.016 -0.455 -0.355 -0.505 -0.101 0.018 1.000  
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  

 

bioppf
eb 

bioppj
an 

bioppj
ul 

bioppj
un 

biopp
mar 

biopp
may 

bioppn
ov 

bioppo
ct 

biopps
ep 

biotem
papr 

biotem
paug 

biotempaug -0.505 -0.545 -0.289 -0.150 -0.473 -0.449 -0.468 -0.157 -0.105 0.977 1.000 

biotempdec -0.442 -0.569 -0.117 0.032 -0.463 -0.303 -0.515 -0.100 0.045 0.996 0.967 

biotempfeb -0.430 -0.567 -0.101 0.040 -0.447 -0.306 -0.516 -0.086 0.061 0.996 0.958 

biotempjan -0.423 -0.574 -0.071 0.075 -0.451 -0.268 -0.525 -0.085 0.079 0.991 0.947 

biotempjul -0.507 -0.541 -0.299 -0.163 -0.471 -0.462 -0.464 -0.159 -0.114 0.974 0.999 

biotempjun -0.480 -0.556 -0.225 -0.090 -0.463 -0.413 -0.486 -0.125 -0.043 0.994 0.993 

biotempmar -0.451 -0.564 -0.147 -0.004 -0.458 -0.341 -0.508 -0.103 0.023 0.999 0.976 

biotempmay -0.462 -0.562 -0.178 -0.042 -0.456 -0.377 -0.497 -0.106 -0.001 0.999 0.983 

biotempnov -0.468 -0.571 -0.172 -0.027 -0.470 -0.353 -0.510 -0.124 -0.006 0.997 0.983 

biotempoct -0.484 -0.563 -0.221 -0.081 -0.471 -0.400 -0.494 -0.135 -0.045 0.994 0.993 

biotempsep -0.495 -0.550 -0.265 -0.127 -0.469 -0.434 -0.475 -0.145 -0.081 0.985 0.999 

biotmaxapr -0.443 -0.568 -0.130 0.005 -0.448 -0.339 -0.510 -0.091 0.036 0.999 0.967 

biotmaxaug -0.524 -0.533 -0.345 -0.203 -0.483 -0.477 -0.452 -0.191 -0.162 0.952 0.994 

biotmaxdec -0.485 -0.584 -0.202 -0.052 -0.490 -0.356 -0.521 -0.168 -0.050 0.986 0.979 

biotmaxfeb -0.470 -0.585 -0.172 -0.031 -0.474 -0.352 -0.525 -0.144 -0.019 0.993 0.973 

biotmaxjan -0.485 -0.592 -0.191 -0.040 -0.494 -0.337 -0.531 -0.178 -0.050 0.979 0.969 

biotmaxjul -0.528 -0.524 -0.367 -0.229 -0.479 -0.495 -0.440 -0.196 -0.182 0.941 0.991 

biotmaxjun -0.487 -0.552 -0.247 -0.111 -0.466 -0.428 -0.478 -0.133 -0.061 0.990 0.996 

biotmaxmar -0.455 -0.578 -0.145 -0.007 -0.460 -0.341 -0.521 -0.118 0.012 0.997 0.969 

biotmaxmay -0.458 -0.561 -0.173 -0.039 -0.452 -0.377 -0.496 -0.101 0.004 0.999 0.981 

biotmaxnov -0.455 -0.577 -0.143 -0.002 -0.462 -0.334 -0.516 -0.112 0.017 0.997 0.972 

biotmaxoct -0.484 -0.569 -0.219 -0.078 -0.474 -0.393 -0.497 -0.137 -0.045 0.993 0.992 

biotmaxsep -0.506 -0.551 -0.287 -0.146 -0.479 -0.442 -0.473 -0.163 -0.106 0.977 0.999 

biotminapr -0.464 -0.558 -0.180 -0.038 -0.461 -0.371 -0.499 -0.113 -0.004 0.998 0.985 

biotminaug -0.483 -0.550 -0.239 -0.104 -0.461 -0.424 -0.479 -0.127 -0.056 0.991 0.996 

biotmindec -0.407 -0.551 -0.056 0.092 -0.438 -0.262 -0.504 -0.052 0.111 0.990 0.946 

biotminfeb -0.397 -0.549 -0.047 0.093 -0.425 -0.268 -0.505 -0.043 0.118 0.989 0.938 

biotminjan -0.376 -0.550 0.004 0.144 -0.415 -0.220 -0.511 -0.026 0.157 0.978 0.914 

biotminjul -0.483 -0.549 -0.240 -0.106 -0.458 -0.427 -0.478 -0.125 -0.056 0.991 0.995 

biotminjun -0.472 -0.558 -0.204 -0.069 -0.458 -0.399 -0.491 -0.116 -0.025 0.997 0.989 

biotminmar -0.444 -0.548 -0.147 0.000 -0.453 -0.340 -0.492 -0.089 0.033 0.997 0.978 

biotminmay -0.465 -0.561 -0.183 -0.044 -0.459 -0.377 -0.498 -0.111 -0.007 0.999 0.985 

biotminnov -0.478 -0.560 -0.201 -0.051 -0.476 -0.371 -0.500 -0.136 -0.029 0.994 0.990 

biotminoct -0.483 -0.557 -0.225 -0.085 -0.467 -0.407 -0.491 -0.133 -0.047 0.994 0.994 

biotminsep -0.484 -0.549 -0.243 -0.108 -0.460 -0.427 -0.477 -0.128 -0.059 0.990 0.996 
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  

 

biotem
pdec 

biotem
pfeb 

biotem
pjan 

biotem
pjul 

biotem
pjun 

biotem
pmar 

biotem
pmay 

biotem
pnov 

biotem
poct 

biotem
psep 

biotma
xapr 

biotempaug            
biotempdec 1.000           
biotempfeb 0.997 1.000          
biotempjan 0.996 0.998 1.000         
biotempjul 0.963 0.954 0.942 1.000        
biotempjun 0.986 0.983 0.973 0.992 1.000       
biotempmar 0.998 0.997 0.993 0.973 0.993 1.000      
biotempmay 0.993 0.993 0.986 0.981 0.997 0.998 1.000     
biotempnov 0.996 0.993 0.989 0.980 0.995 0.998 0.997 1.000    
biotempoct 0.988 0.984 0.977 0.991 0.999 0.994 0.997 0.997 1.000   
biotempsep 0.976 0.969 0.959 0.998 0.997 0.984 0.990 0.989 0.997 1.000  
biotmaxapr 0.996 0.998 0.994 0.964 0.989 0.998 0.997 0.995 0.989 0.977 1.000 

biotmaxaug 0.941 0.927 0.915 0.995 0.977 0.951 0.960 0.963 0.978 0.989 0.938 

biotmaxdec 0.989 0.982 0.981 0.976 0.985 0.988 0.986 0.994 0.991 0.984 0.983 

biotmaxfeb 0.993 0.992 0.990 0.969 0.987 0.994 0.992 0.996 0.991 0.980 0.993 

biotmaxjan 0.984 0.977 0.979 0.965 0.976 0.982 0.978 0.989 0.983 0.974 0.977 

biotmaxjul 0.928 0.913 0.900 0.992 0.970 0.940 0.951 0.952 0.970 0.984 0.926 

biotmaxjun 0.981 0.976 0.966 0.995 0.999 0.989 0.994 0.992 0.998 0.999 0.984 

biotmaxmar 0.996 0.997 0.994 0.965 0.988 0.997 0.995 0.996 0.990 0.978 0.998 

biotmaxmay 0.993 0.993 0.986 0.979 0.996 0.998 1.000 0.996 0.995 0.988 0.997 

biotmaxnov 0.997 0.997 0.995 0.968 0.989 0.998 0.996 0.997 0.992 0.981 0.997 

biotmaxoct 0.989 0.984 0.978 0.990 0.997 0.993 0.996 0.997 0.999 0.996 0.989 

biotmaxsep 0.969 0.959 0.949 0.999 0.992 0.976 0.983 0.984 0.993 0.998 0.968 

biotminapr 0.994 0.992 0.985 0.983 0.997 0.998 0.999 0.998 0.997 0.991 0.995 

biotminaug 0.982 0.977 0.967 0.995 0.999 0.989 0.995 0.992 0.998 0.999 0.985 

biotmindec 0.994 0.995 0.994 0.941 0.974 0.992 0.986 0.985 0.974 0.958 0.991 

biotminfeb 0.991 0.996 0.994 0.934 0.970 0.990 0.984 0.981 0.969 0.952 0.993 

biotminjan 0.984 0.990 0.992 0.909 0.952 0.979 0.971 0.969 0.953 0.931 0.984 

biotminjul 0.981 0.977 0.967 0.994 0.999 0.989 0.995 0.991 0.998 0.998 0.985 

biotminjun 0.989 0.988 0.979 0.988 0.999 0.996 0.999 0.996 0.998 0.994 0.993 

biotminmar 0.995 0.992 0.987 0.975 0.993 0.997 0.996 0.995 0.992 0.985 0.993 

biotminmay 0.994 0.992 0.986 0.983 0.998 0.998 1.000 0.998 0.998 0.991 0.996 

biotminnov 0.992 0.985 0.980 0.987 0.996 0.994 0.994 0.997 0.997 0.993 0.988 

biotminoct 0.987 0.983 0.974 0.992 0.999 0.993 0.996 0.996 0.999 0.997 0.988 

biotminsep 0.981 0.976 0.966 0.995 0.999 0.989 0.994 0.991 0.998 0.999 0.984 
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  

 

biotm
axaug 

biotm
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biotm
axfeb 

biotm
axjan 

biotm
axjul 

biotm
axjun 

biotm
axmar 

biotm
axmay 

biotm
axnov 

biotm
axoct 

biotm
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biotempaug            

biotempdec            

biotempfeb            

biotempjan            

biotempjul            

biotempjun            

biotempmar            

biotempmay            

biotempnov            

biotempoct            

biotempsep            

biotmaxapr            

biotmaxaug 1.000           
biotmaxdec 0.965 1.000          
biotmaxfeb 0.951 0.996 1.000         
biotmaxjan 0.955 0.998 0.994 1.000        
biotmaxjul 0.999 0.955 0.940 0.944 1.000       
biotmaxjun 0.983 0.983 0.983 0.973 0.977 1.000      
biotmaxmar 0.943 0.991 0.998 0.987 0.931 0.983 1.000     
biotmaxmay 0.957 0.984 0.991 0.976 0.947 0.993 0.995 1.000    
biotmaxnov 0.947 0.992 0.998 0.988 0.935 0.985 0.999 0.995 1.000   
biotmaxoct 0.976 0.993 0.992 0.986 0.968 0.997 0.991 0.995 0.993 1.000  
biotmaxsep 0.994 0.982 0.975 0.973 0.990 0.995 0.970 0.980 0.974 0.993 1.000 

biotminapr 0.964 0.988 0.991 0.979 0.955 0.995 0.993 0.998 0.994 0.996 0.984 

biotminaug 0.982 0.983 0.983 0.973 0.976 0.999 0.984 0.994 0.985 0.997 0.995 

biotmindec 0.912 0.968 0.979 0.962 0.898 0.966 0.986 0.986 0.988 0.973 0.947 

biotminfeb 0.900 0.962 0.977 0.956 0.886 0.962 0.987 0.985 0.987 0.969 0.938 

biotminjan 0.872 0.950 0.968 0.946 0.855 0.942 0.978 0.973 0.978 0.953 0.915 

biotminjul 0.981 0.982 0.983 0.972 0.975 0.999 0.983 0.994 0.985 0.996 0.994 

biotminjun 0.970 0.986 0.990 0.977 0.962 0.998 0.991 0.998 0.992 0.997 0.989 

biotminmar 0.954 0.981 0.986 0.972 0.944 0.990 0.990 0.996 0.992 0.991 0.977 

biotminmay 0.964 0.988 0.992 0.980 0.954 0.995 0.995 0.999 0.996 0.997 0.985 

biotminnov 0.975 0.992 0.990 0.985 0.966 0.995 0.989 0.993 0.991 0.996 0.990 

biotminoct 0.979 0.988 0.988 0.979 0.972 0.999 0.988 0.995 0.990 0.998 0.993 

biotminsep 0.982 0.983 0.983 0.972 0.976 0.999 0.983 0.993 0.985 0.996 0.995 
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Table C1, Continued. Pearson’s correlation coefficients for all climatic variables (n=67).  
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biotmi
njun 

biotmi
nmar 

biotmi
nmay 

biotmi
nnov 

biotmi
noct 

biotmi
nsep 

biotempaug             

biotempdec             

biotempfeb             

biotempjan             

biotempjul             

biotempjun             

biotempmar             

biotempmay             

biotempnov             

biotempoct             

biotempsep             

biotmaxapr             

biotmaxaug             

biotmaxdec             

biotmaxfeb             

biotmaxjan             

biotmaxjul             

biotmaxjun             

biotmaxmar             

biotmaxmay             

biotmaxnov             

biotmaxoct             

biotmaxsep             

biotminapr 1.000            
biotminaug 0.995 1.000           
biotmindec 0.986 0.968 1.000          
biotminfeb 0.983 0.963 0.998 1.000         
biotminjan 0.969 0.944 0.994 0.997 1.000        
biotminjul 0.995 1.000 0.967 0.963 0.944 1.000       
biotminjun 0.998 0.998 0.979 0.977 0.961 0.998 1.000      
biotminmar 0.998 0.990 0.992 0.988 0.975 0.990 0.995 1.000     
biotminmay 0.999 0.995 0.985 0.983 0.969 0.995 0.999 0.997 1.000    
biotminnov 0.997 0.995 0.978 0.972 0.956 0.994 0.996 0.995 0.996 1.000   
biotminoct 0.997 0.999 0.973 0.969 0.951 0.999 0.999 0.993 0.997 0.997 1.000  
biotminsep 0.995 1.000 0.967 0.962 0.943 1.000 0.998 0.990 0.995 0.994 0.999 1.000 
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Table C2. Pearson’s correlation coefficients for all solar radiation variables, n=13.  

 
sorada
pr 

sorada
ug 

sorad
ec 

soradf
eb 

soradj
an 

sorad
jul 

soradj
un 

sorad
mar 

sorad
may 

soradn
ov 

sorad
oct 

sorads
ep 

sorad
yr 

sorada
pr 1.000             
sorada
ug 0.994 1.000            
sorade
c 0.897 0.842 1.000           
soradf
eb 0.927 0.879 0.997 1.000          
soradja
n 0.902 0.849 1.000 0.998 1.000         
soradju
l 0.878 0.926 0.579 0.635 0.588 1.000        
soradju
n 0.814 0.874 0.477 0.538 0.487 0.993 1.000       
sorad
mar 0.968 0.934 0.978 0.991 0.981 0.730 0.643 1.000      
sorad
may 0.924 0.961 0.662 0.714 0.671 0.994 0.974 0.799 1.000     
soradn
ov 0.908 0.855 1.000 0.999 1.000 0.598 0.497 0.984 0.680 1.000    
sorado
ct 0.937 0.892 0.994 1.000 0.996 0.656 0.561 0.995 0.733 0.997 1.000   
sorads
ep 0.981 0.953 0.966 0.982 0.969 0.767 0.685 0.998 0.832 0.972 0.987 1.000  
sorady
r 0.994 0.975 0.940 0.962 0.944 0.821 0.746 0.990 0.877 0.948 0.970 0.996 1.000 
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Table C3. Pearson’s correlation coefficients for all edaphic variables, n = 33.  
 

soawcf
t1 

soawcf
t2 

soawcf
t3 

soawcf
t4 

soawct
ot 

soclayf
t1 

soclayf
t2 

soclayf
t3 

soclayf
t4 

soclayh
z 

soclayt
ot 

soawcft1 1.000 
          

soawcft2 0.702 1.000 
         

soawcft3 0.532 0.859 1.000 
        

soawcft4 0.404 0.697 0.900 1.000 
       

soawctot 0.732 0.926 0.946 0.871 1.000 
      

soclayft1 0.579 0.399 0.263 0.182 0.392 1.000 
     

soclayft2 0.609 0.567 0.417 0.305 0.528 0.778 1.000 
    

soclayft3 0.474 0.718 0.751 0.602 0.730 0.446 0.632 1.000 
   

soclayft4 0.381 0.606 0.783 0.797 0.741 0.338 0.482 0.796 1.000 
  

soclayhz 0.139 0.008 -0.052 -0.103 -0.012 0.314 0.395 0.223 0.010 1.000 
 

soclaytot 0.644 0.444 0.333 0.232 0.457 0.887 0.861 0.591 0.457 0.387 1.000 

sodepth 0.324 0.638 0.729 0.718 0.702 0.282 0.349 0.603 0.650 -0.030 0.214 

sodrexd -0.073 -0.051 -0.023 -0.005 -0.042 -0.132 -0.119 -0.074 -0.039 -0.044 -0.133 

sodrmwd 0.117 0.061 0.070 0.082 0.091 0.150 0.202 0.175 0.156 0.157 0.219 

sodrsexd -0.229 -0.151 -0.108 -0.061 -0.144 -0.335 -0.320 -0.168 -0.121 -0.105 -0.329 

sodrwd 0.496 0.325 0.225 0.154 0.326 0.590 0.457 0.249 0.176 0.073 0.532 

sopmcal 0.091 -0.089 -0.120 -0.175 -0.092 0.039 0.017 -0.006 -0.096 0.000 0.067 

sopsashci -0.107 -0.074 -0.051 -0.033 -0.068 -0.167 -0.140 -0.082 -0.063 -0.010 -0.162 

sopscol -0.066 0.112 0.200 0.247 0.148 -0.222 -0.173 -0.053 -0.002 -0.087 -0.238 

sopscsk -0.056 -0.109 -0.143 -0.150 -0.132 0.304 0.335 0.085 -0.027 0.531 0.308 

sopsf 0.306 0.333 0.283 0.179 0.310 0.297 0.373 0.422 0.260 0.276 0.379 

sopsfl 0.515 0.614 0.524 0.404 0.580 0.209 0.285 0.384 0.361 -0.109 0.266 

sopsfsi 0.149 0.176 0.187 0.174 0.195 0.040 0.049 0.076 0.095 -0.004 0.042 

sopsl 0.142 -0.291 -0.357 -0.305 -0.240 -0.021 -0.074 -0.359 -0.299 -0.099 0.020 

sopslsk -0.256 -0.287 -0.227 -0.166 -0.266 0.036 -0.180 -0.080 -0.036 -0.180 -0.067 

sopss -0.134 -0.024 0.037 0.063 -0.010 -0.274 -0.195 -0.091 -0.045 -0.055 -0.247 

sorlpres -0.118 -0.425 -0.582 -0.671 -0.526 -0.051 -0.112 -0.385 -0.543 0.127 0.010 

soshzO 0.169 -0.044 -0.116 -0.132 -0.046 0.026 0.150 0.076 0.012 0.163 0.081 

sosrfclpct 0.317 0.274 0.255 0.219 0.301 0.614 0.362 0.238 0.207 0.072 0.495 

sostxbr -0.579 -0.358 -0.270 -0.231 -0.397 -0.580 -0.419 -0.275 -0.226 -0.075 -0.535 

sostxco -0.162 -0.043 0.020 0.048 -0.030 -0.312 -0.240 -0.114 -0.062 -0.065 -0.280 

sostxm 0.257 0.242 0.203 0.148 0.239 0.524 0.430 0.276 0.258 0.067 0.466 

sostxmco -0.055 -0.048 -0.027 0.010 -0.033 -0.161 -0.258 -0.184 -0.164 -0.132 -0.177 
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Table C3, Continued. Pearson’s correlation coefficients for all edaphic variables, n = 33.  
 

sodept
h 

sodrex
d 

sodrm
wd 

sodrse
xd 

sodrw
d 

sopmc
al 

sopsas
hci 

sopsco
l 

sopscs
k 

sopsf sopsfl 

soawcft1 
           

soawcft2 
           

soawcft3 
           

soawcft4 
           

soawctot 
           

soclayft1 
           

soclayft2 
           

soclayft3 
           

soclayft4 
           

soclayhz 
           

soclaytot 
           

sodepth 1.000 
          

sodrexd 0.087 1.000 
         

sodrmwd 0.025 -0.022 1.000 
        

sodrsexd 0.104 -0.055 -0.052 1.000 
       

sodrwd 0.155 -0.284 -0.268 -0.675 1.000 
      

sopmcal -0.153 0.055 -0.043 -0.008 0.047 1.000 
     

sopsashci -0.003 -0.016 -0.015 0.222 -0.157 -0.031 1.000 
    

sopscol 0.238 0.054 -0.043 0.155 -0.077 -0.089 -0.031 1.000 
   

sopscsk -0.027 -0.043 0.163 -0.102 0.072 -0.044 -0.030 -0.085 1.000 
  

sopsf 0.130 -0.042 0.277 -0.100 0.036 -0.001 -0.029 -0.083 -0.079 1.000 
 

sopsfl 0.240 -0.076 -0.052 -0.177 0.258 -0.091 -0.053 -0.150 -0.142 -0.140 1.000 

sopsfsi 0.080 -0.014 -0.013 -0.034 0.050 0.041 -0.010 -0.028 -0.026 -0.026 -0.047 

sopsl -0.353 -0.051 -0.049 0.037 0.059 0.183 -0.036 -0.102 -0.096 -0.094 -0.171 

sopslsk -0.029 -0.036 -0.091 -0.102 0.214 0.141 -0.067 -0.190 -0.180 -0.177 -0.319 

sopss 0.217 0.333 -0.027 0.357 -0.354 -0.056 -0.020 -0.057 -0.053 -0.053 -0.095 

sorlpres -0.786 -0.109 -0.056 -0.180 0.059 0.143 -0.025 -0.307 0.099 -0.082 -0.087 

soshzO -0.073 -0.015 0.097 0.091 -0.047 0.156 0.006 -0.120 0.059 0.031 -0.039 

sosrfclpct 0.315 -0.123 -0.045 -0.189 0.472 0.037 -0.117 -0.051 0.137 0.102 0.147 

sostxbr -0.480 -0.039 -0.037 -0.093 -0.482 -0.076 -0.004 -0.077 -0.073 -0.072 -0.129 

sostxco 0.199 0.314 -0.032 0.388 -0.364 -0.066 0.290 -0.017 -0.063 -0.062 -0.105 

sostxm 0.180 -0.069 0.066 -0.288 0.350 0.156 -0.086 -0.236 0.193 0.094 0.170 

sostxmco 0.008 -0.035 -0.103 0.114 0.071 -0.213 -0.040 0.386 -0.171 -0.106 -0.040 
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Table C3, Continued. Pearson’s correlation coefficients for all edaphic variables, n = 33.  
 

sopsfsi sopsl sopslsk sopss sorlpre
s 

soshzO sosrfcl
pct 

sostxbr sostxc
o 

sostxm sostxm
co 

soawcft1 
           

soawcft2 
           

soawcft3 
           

soawcft4 
           

soawctot 
           

soclayft1 
           

soclayft2 
           

soclayft3 
           

soclayft4 
           

soclayhz 
           

soclaytot 
           

sodepth 
           

sodrexd 
           

sodrmwd 
           

sodrsexd 
           

sodrwd 
           

sopmcal 
           

sopsashci 
           

sopscol 
           

sopscsk 
           

sopsf 
           

sopsfl 
           

sopsfsi 1.000 
          

sopsl -0.032 1.000 
         

sopslsk -0.059 -0.216 1.000 
        

sopss -0.018 -0.064 -0.120 1.000 
       

sorlpres -0.088 0.295 0.015 -0.204 1.000 
      

soshzO -0.037 0.039 0.099 -0.076 0.159 1.000 
     

sosrfclpct 0.051 0.010 0.070 -0.140 -0.156 -0.398 1.000 
    

sostxbr -0.024 -0.087 -0.153 -0.049 0.238 -0.103 -0.465 1.000 
   

sostxco -0.021 -0.075 -0.123 0.805 -0.197 -0.089 -0.174 -0.057 1.000 
  

sostxm 0.101 -0.009 0.049 -0.155 -0.073 -0.328 0.589 -0.211 -0.182 1.000 
 

sostxmco -0.067 0.063 0.026 -0.116 -0.062 -0.287 -0.046 -0.185 -0.160 -0.588 1.000 
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Table C4. Pearson’s correlation coefficients for all topographic variables, n=20.  
 

cos_n
m 

cti_nm curv_n
m 

curvpl
a_nm 

curvpr
o_nm 

diss_n
m 

east_n
m 

imi_n
m 

ldform
_nm 

north_
nm 

cos_nm 1.000 
         

cti_nm 0.033 1.000 
        

curv_nm -0.065 -0.464 1.000 
       

curvpla_nm -0.048 -0.491 0.840 1.000 
      

curvpro_nm 0.063 0.323 -0.886 -0.492 1.000 
     

diss_nm -0.028 -0.452 0.765 0.567 -0.741 1.000 
    

east_nm 0.004 0.043 -0.020 -0.004 0.029 -0.012 1.000 
   

imi_nm 0.042 0.492 -0.165 -0.130 0.154 -0.214 0.005 1.000 
  

ldform_nm -0.064 -0.474 0.976 0.805 -0.878 0.797 -0.016 -0.172 1.000 
 

north_nm 0.751 -0.034 -0.001 0.006 0.006 0.006 0.002 0.008 0.000 1.000 

rough_nm -0.015 -0.375 0.083 0.122 -0.029 -0.020 -0.039 -0.040 0.083 0.008 

sar_nm -0.010 -0.383 0.086 0.126 -0.030 -0.018 -0.040 -0.052 0.087 0.013 

sds_nm -0.027 -0.308 0.035 0.037 -0.025 0.003 -0.041 -0.017 0.043 0.001 

sei_nm -1.000 -0.033 0.064 0.047 -0.062 0.027 -0.004 -0.042 0.064 -0.759 

sin_nm 0.010 0.010 -0.023 0.006 0.042 0.002 0.749 -0.023 -0.013 0.004 

slopd_nm -0.026 -0.492 0.072 0.128 -0.007 -0.052 -0.054 -0.076 0.072 0.016 

slppos_nm -0.064 -0.474 0.976 0.805 -0.878 0.797 -0.016 -0.172 1.000 0.000 

srr_nm -0.043 0.020 0.249 -0.061 -0.451 0.569 0.012 -0.028 0.295 -0.048 

srtmelev -0.124 -0.127 0.081 0.092 -0.052 0.071 -0.036 -0.026 0.083 -0.107 

trasp_nm -0.641 0.007 0.011 -0.002 -0.020 0.001 -0.527 -0.010 0.009 -0.851 
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Table C4, Continued. Pearson’s correlation coefficients for all topographic variables, n=20.  
 

rough_
nm 

sar_nm sds_nm sei_nm sin_nm slopd_n
m 

slppos_
nm 

srr_nm srtmele
v 

trasp_n
m 

cos_nm           
cti_nm           
curv_nm           
curvpla_nm           
curvpro_nm           
diss_nm           
east_nm           
imi_nm           
ldform_nm           
north_nm           
rough_nm 1.000 

         

sar_nm 0.990 1.000 
        

sds_nm 0.547 0.508 1.000 
       

sei_nm 0.016 0.010 0.027 1.000 
      

sin_nm -0.073 -0.073 -0.042 -0.011 1.000 
     

slopd_nm 0.931 0.930 0.612 0.026 -0.062 1.000 
    

slppos_nm 0.083 0.087 0.043 0.064 -0.013 0.072 1.000 
   

srr_nm -0.053 -0.054 0.009 0.043 0.013 -0.100 0.295 1.000 
  

srtmelev 0.106 0.104 0.058 0.123 0.005 0.125 0.083 0.016 1.000 
 

trasp_nm 0.014 0.010 0.020 0.648 -0.397 0.015 0.009 0.034 0.110 1.000 
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Table C5. Pearson’s correlation coefficients for all vegetation variables, n=2.  

 ndmi2000 ndvi2000 

ndmi2000 1  
ndvi2000 0.742 1 
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Table C6. Pearson’s correlation coefficients for uncorrelated variables from Tables C1-C5, n = 44.  
 

bio15 bio18 bio3 bio6 bio9 biopp
nov 

hugra
zall 

soawc
ft1 

soclay
ft3 

soclay
hz 

soclay
tot 

bio15 1.000 
          

bio18 0.316 1.000 
         

bio3 0.407 0.598 1.000 
        

bio6 0.462 -0.161 0.295 1.000 
       

bio9 0.114 -0.266 0.000 0.619 1.000 
      

bioppnov -0.673 0.261 -0.215 -0.511 -0.226 1.000 
     

hugrazall -0.200 0.057 -0.178 -0.447 -0.274 0.230 1.000 
    

soawcft1 0.054 0.072 0.158 0.033 0.059 0.015 0.081 1.000 
   

soclayft3 0.001 0.024 -0.066 -0.072 0.007 0.050 0.217 0.474 1.000 
  

soclayhz 0.073 0.085 -0.011 -0.086 -0.042 0.021 0.090 0.139 0.223 1.000 
 

soclaytot 0.036 0.125 0.106 -0.043 -0.024 0.038 0.141 0.644 0.591 0.387 1.000 

sodepth -0.179 -0.207 -0.317 -0.031 0.058 0.139 0.144 0.324 0.603 -0.030 0.214 

sodrexd -0.084 -0.120 -0.152 -0.020 0.011 0.025 0.122 -0.073 -0.074 -0.044 -0.133 

sodrmwd -0.006 -0.060 -0.085 -0.054 -0.051 0.008 0.144 0.117 0.175 0.157 0.219 

sodrsexd -0.078 0.025 -0.073 -0.011 -0.039 0.082 0.025 -0.229 -0.168 -0.105 -0.329 

sodrwd 0.080 0.043 0.173 0.143 0.110 -0.039 -0.095 0.496 0.249 0.073 0.532 

sopmcal 0.179 0.272 0.351 0.168 0.110 -0.100 -0.019 0.091 -0.006 0.000 0.067 

sopsashci 0.112 -0.027 -0.089 -0.006 -0.009 -0.072 -0.044 -0.107 -0.082 -0.010 -0.162 

sopscol -0.102 -0.156 -0.208 0.037 0.048 0.011 0.040 -0.066 -0.053 -0.087 -0.238 

sopscsk -0.013 -0.024 -0.102 -0.035 -0.042 0.069 0.142 -0.056 0.085 0.531 0.308 

sopsf 0.110 0.048 0.045 0.040 0.062 -0.083 0.023 0.306 0.422 0.276 0.379 

sopsfl -0.074 0.032 -0.009 -0.191 -0.077 0.123 0.180 0.515 0.384 -0.109 0.266 
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Table C6, Continued. Pearson’s correlation coefficients for uncorrelated variables from Tables C1-C5, n = 44.  
 

bio15 bio18 bio3 bio6 bio9 bioppn
ov 

hugraz
all 

soawcf
t1 

soclayf
t3 

soclay
hz 

soclayt
ot 

sopsfsi 0.074 -0.018 0.026 0.073 0.052 -0.053 -0.063 0.149 0.076 -0.004 0.042 

sopsl 0.081 0.085 0.269 0.201 0.100 -0.121 -0.203 0.142 -0.359 -0.099 0.020 

sopslsk 0.025 0.017 0.119 0.185 0.103 -0.028 -0.132 -0.256 -0.080 -0.180 -0.067 

sopss -0.143 -0.099 -0.145 -0.091 -0.046 0.123 0.150 -0.134 -0.091 -0.055 -0.247 

soshzO 0.099 0.223 0.140 -0.071 -0.050 0.056 0.130 0.169 0.076 0.163 0.081 

sosrfclpct -0.099 -0.068 0.008 -0.002 0.038 0.020 -0.065 0.317 0.238 0.072 0.495 

sostxbr 0.019 0.009 -0.049 -0.180 -0.110 -0.061 -0.038 -0.579 -0.275 -0.075 -0.535 

sostxm -0.037 0.016 -0.022 -0.045 -0.027 0.029 0.051 0.257 0.276 0.067 0.466 

sostxmco -0.014 -0.140 0.017 0.214 0.133 -0.072 -0.172 -0.055 -0.184 -0.132 -0.177 

soradec 0.122 0.310 0.138 -0.217 -0.189 0.123 0.108 0.040 0.018 0.090 0.043 

soradmay 0.021 0.409 0.263 -0.351 -0.277 0.219 0.172 0.240 0.042 0.080 0.156 

cti_nm 0.063 0.036 0.052 0.065 0.033 -0.058 0.001 0.164 0.071 -0.045 0.026 

curvpro_nm -0.040 0.036 0.006 -0.036 -0.022 0.019 0.025 0.032 0.098 0.037 0.027 

imi_nm 0.000 0.013 0.016 -0.001 -0.001 -0.041 -0.005 0.047 0.052 0.004 0.001 

sar_nm -0.104 -0.061 -0.110 -0.112 -0.059 0.087 0.017 -0.210 0.021 0.025 -0.053 

sds_nm -0.073 -0.080 -0.104 -0.067 -0.025 0.047 0.063 -0.108 0.034 0.077 -0.003 

sei_nm 0.208 0.235 0.060 -0.062 -0.072 0.032 0.039 -0.031 0.012 0.059 -0.013 

sin_nm 0.212 -0.092 -0.048 0.001 -0.028 -0.249 0.007 0.032 0.013 0.037 0.007 

srr_nm 0.088 0.030 0.048 0.047 0.030 -0.020 -0.021 -0.010 -0.069 -0.018 -0.019 

srtmelev -0.200 0.494 0.229 -0.796 -0.579 0.447 0.308 0.086 0.083 0.151 0.148 

trasp_nm 0.084 0.322 0.088 -0.060 -0.052 0.190 0.077 -0.021 0.044 0.046 -0.008 

ndmi2000 -0.042 0.165 0.021 -0.223 -0.093 0.186 0.107 -0.065 0.058 0.112 0.018 
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Table C6, Continued. Pearson’s correlation coefficients for uncorrelated variables from Tables C1-C5, n = 44.  
 

sodep
th 

sodre
xd 

sodrm
wd 

sodrs
exd 

sodrw
d 

sopm
cal 

sopsa
shci 

sopsc
ol 

sopsc
sk 

sopsf sopsfl 

bio15 
           

bio18 
           

bio3 
           

bio6 
           

bio9 
           

bioppnov 
           

hugrazall 
           

soawcft1 
           

soclayft3 
           

soclayhz 
           

soclaytot 
           

sodepth 1.000 
          

sodrexd 0.087 1.000 
         

sodrmwd 0.025 -0.022 1.000 
        

sodrsexd 0.104 -0.055 -0.052 1.000 
       

sodrwd 0.155 -0.284 -0.268 -0.675 1.000 
      

sopmcal -0.153 0.055 -0.043 -0.008 0.047 1.000 
     

sopsashci -0.003 -0.016 -0.015 0.222 -0.157 -0.031 1.000 
    

sopscol 0.238 0.054 -0.043 0.155 -0.077 -0.089 -0.031 1.000 
   

sopscsk -0.027 -0.043 0.163 -0.102 0.072 -0.044 -0.030 -0.085 1.000 
  

sopsf 0.130 -0.042 0.277 -0.100 0.036 -0.001 -0.029 -0.083 -0.079 1.000 
 

sopsfl 0.240 -0.076 -0.052 -0.177 0.258 -0.091 -0.053 -0.150 -0.142 -0.140 1.000 
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Table C6, Continued. Pearson’s correlation coefficients for uncorrelated variables from Tables C1-C5, n = 44.  

 

sodep
th 

sodre
xd 

sodrm
wd 

sodrs
exd 

sodrw
d 

sopm
cal 

sopsa
shci 

sopsc
ol 

sopsc
sk sopsf sopsfl 

sopsfsi 0.080 -0.014 -0.013 -0.034 0.050 0.041 -0.010 -0.028 -0.026 -0.026 -0.047 

sopsl -0.353 -0.051 -0.049 0.037 0.059 0.183 -0.036 -0.102 -0.096 -0.094 -0.171 

sopslsk -0.029 -0.036 -0.091 -0.102 0.214 0.141 -0.067 -0.190 -0.180 -0.177 -0.319 

sopss 0.217 0.333 -0.027 0.357 -0.354 -0.056 -0.020 -0.057 -0.053 -0.053 -0.095 

soshzO -0.073 -0.015 0.097 0.091 -0.047 0.156 0.006 -0.120 0.059 0.031 -0.039 

sosrfclpct 0.315 -0.123 -0.045 -0.189 0.472 0.037 -0.117 -0.051 0.137 0.102 0.147 

sostxbr -0.480 -0.039 -0.037 -0.093 -0.482 -0.076 -0.004 -0.077 -0.073 -0.072 -0.129 

sostxm 0.180 -0.069 0.066 -0.288 0.350 0.156 -0.086 -0.236 0.193 0.094 0.170 

sostxmco 0.008 -0.035 -0.103 0.114 0.071 -0.213 -0.040 0.386 -0.171 -0.106 -0.040 

soradec -0.088 -0.001 0.000 0.025 -0.017 0.094 -0.003 -0.029 -0.022 0.018 0.065 

soradmay -0.034 -0.026 0.039 0.015 0.035 0.077 -0.062 -0.038 -0.088 0.082 0.223 

cti_nm 0.138 -0.005 0.045 0.056 -0.005 -0.035 0.042 0.042 -0.062 0.087 0.100 

curvpro_nm 0.111 0.003 -0.023 0.054 -0.008 -0.040 0.153 0.031 0.061 0.008 0.023 

imi_nm 0.034 -0.020 -0.006 -0.009 -0.002 -0.028 0.025 0.006 0.003 0.012 0.058 

sar_nm -0.052 -0.038 -0.005 -0.042 -0.026 -0.029 0.004 -0.055 0.111 -0.081 -0.139 

sds_nm -0.044 -0.017 -0.012 -0.100 0.042 -0.038 0.000 -0.081 0.092 -0.051 -0.066 

sei_nm -0.058 0.020 -0.026 0.034 -0.039 0.075 0.021 0.000 -0.005 -0.011 0.002 

sin_nm -0.038 0.014 0.066 -0.029 -0.030 0.041 0.055 -0.037 -0.017 0.051 0.009 

srr_nm -0.069 -0.036 -0.002 0.011 0.005 0.013 -0.063 -0.036 -0.013 0.008 -0.039 

srtmelev -0.153 -0.104 0.067 -0.038 -0.034 0.050 -0.026 -0.187 0.028 0.042 0.161 

trasp_nm -0.022 -0.005 -0.089 0.078 -0.024 0.095 0.001 0.051 0.013 -0.039 0.007 

ndmi2000 -0.069 -0.046 -0.018 -0.046 0.010 0.128 0.015 -0.100 0.121 -0.033 -0.043 
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Table C6, Continued. Pearson’s correlation coefficients for uncorrelated variables from Tables C1-C5, n = 44.  
 

sopsfs
i 

sopsl sopsls
k 

sopss soshz
O 

sosrfc
lpct 

sostxb
r 

sostx
m 

sostx
mco 

sorad
ec 

sorad
may 

sopsfsi 1.000 
          

sopsl -0.032 1.000 
         

sopslsk -0.059 -0.216 1.000 
        

sopss -0.018 -0.064 -0.120 1.000 
       

soshzO -0.037 0.039 0.099 -0.076 1.000 
      

sosrfclpct 0.051 0.010 0.070 -0.140 -0.398 1.000 
     

sostxbr -0.024 -0.087 -0.153 -0.049 -0.103 -0.465 1.000 
    

sostxm 0.101 -0.009 0.049 -0.155 -0.328 0.589 -0.211 1.000 
   

sostxmco -0.067 0.063 0.026 -0.116 -0.287 -0.046 -0.185 -0.588 1.000 
  

soradec -0.006 -0.020 -0.028 0.002 0.121 -0.044 -0.003 -0.035 -0.047 1.000 
 

soradmay 0.016 0.048 -0.168 0.043 0.032 0.118 -0.088 0.045 -0.042 0.662 1.000 

cti_nm 0.009 0.009 -0.104 0.097 -0.081 0.092 -0.103 0.085 -0.035 -0.078 0.153 

curvpro_nm -0.004 -0.037 -0.030 -0.008 0.038 0.026 -0.056 0.020 -0.046 -0.186 -0.096 

imi_nm -0.012 -0.039 -0.034 -0.012 -0.011 0.021 0.008 0.047 -0.058 -0.062 -0.024 

sar_nm -0.039 -0.111 0.171 -0.074 0.143 -0.154 0.128 -0.047 -0.077 -0.079 -0.584 

sds_nm -0.033 -0.112 0.161 -0.078 0.137 -0.087 0.074 -0.048 -0.054 -0.019 -0.300 

sei_nm -0.004 -0.024 0.005 0.000 0.104 -0.101 0.024 -0.058 -0.028 0.868 0.417 

sin_nm 0.001 -0.016 -0.024 -0.003 0.045 -0.034 0.033 -0.001 -0.045 -0.006 0.011 

srr_nm -0.001 0.037 0.028 0.026 -0.050 0.031 0.008 0.030 0.011 0.062 0.069 

srtmelev -0.045 -0.082 -0.086 -0.061 0.265 -0.046 0.130 0.013 -0.232 0.340 0.511 

trasp_nm 0.009 -0.030 0.002 0.031 0.098 -0.076 -0.004 -0.061 -0.027 0.575 0.301 

ndmi2000 -0.060 -0.105 0.119 -0.120 0.290 -0.115 0.076 -0.029 -0.170 -0.046 -0.034 
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Table C6, Continued. Pearson’s correlation coefficients for uncorrelated variables from Tables C1-C5, n = 44.  
 

cti_n
m 

curvp
ro_n
m 

imi_n
m 

sar_n
m 

sds_n
m 

sei_n
m 

sin_n
m 

srr_n
m 

srtmel
ev 

trasp_
nm 

ndmi2
000 

sopsfsi            

sopsl            

sopslsk            

sops            

soshzO            

sosrfclpct            

sostxbr            

sostxm            

sostxmco            

soradec            

soradmay            

cti_nm 1.000 
          

curvpro_nm 0.323 1.000 
         

imi_nm 0.492 0.154 1.000 
        

sar_nm -0.383 -0.030 -0.052 1.000 
       

sds_nm -0.308 -0.025 -0.017 0.508 1.000 
      

sei_nm -0.033 -0.062 -0.042 0.010 0.027 1.000 
     

sin_nm 0.010 0.042 -0.023 -0.073 -0.042 -0.011 1.000 
    

srr_nm 0.020 -0.451 -0.028 -0.054 0.009 0.043 0.013 1.000 
   

srtmelev -0.127 -0.052 -0.026 0.104 0.058 0.123 0.005 0.016 1.000 
  

trasp_nm 0.007 -0.020 -0.010 0.010 0.020 0.648 -0.397 0.034 0.110 1.000 
 

ndmi2000 -0.206 0.024 -0.054 0.180 0.190 -0.070 -0.039 -0.031 0.352 -0.007 1.000 
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Table C7. Variance inflation factors (VIFs) of uncorrelated variables from Table 6, without dummy-coded variables. 

Variable VIF 

soradmay 5.142356 

bio18 5.046763 

bio15 4.971012 

bioppnov 4.800428 

bio6 4.738056 

bio3 3.699583 

soclaytot 3.440616 

sar_nm 3.300309 

soclayft3 2.817262 

sei_nm 2.712856 

trasp_nm 2.574332 

sodepth 2.485953 

bio9 2.215679 

soawcft1 2.160101 

cti_nm 2.068413 

sosrfclpct 1.680005 

curvpro_nm 1.581844 

sin_nm 1.523809 

imi_nm 1.486698 

sds_nm 1.435715 

srr_nm 1.345768 

soclayhz 1.279007 

ndmi2000 1.24436 
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Table C8. Variance inflation factors (VIFs) of uncorrelated variables from Table 6, with dummy-coded variables. 

Variable VIF  Variable VIF  

sodrwd 68.61024  sopsf 3.724356  

sodrsexd 36.75412  sar_nm 3.353964  

sostxbr 34.95635  sopscsk 3.219583  

sostxm 14.19956  sosrfclpct 3.147548  

sostxmco 12.82718  sopsl 2.976283  

sodrmwd 10.28204  sopscol 2.781234  

sodrexd 9.636681  sei_nm 2.775516  

soshzO 8.010649  trasp_nm 2.688383  

bio6 6.317222  bio9 2.67792  

sopsfl 6.206236  cti_nm 2.083072  

bio18 5.808298  soclayhz 1.862899  

soclaytot 5.769712  curvpro_nm 1.672925  

bio15 5.678827  sopsashci 1.632676  

bioppnov 5.383735  sin_nm 1.578826  

sopslsk 5.349394  hugrazall 1.568201  

soawcft1 5.32554  imi_nm 1.483004  

soradmay 5.281852  sds_nm 1.477994  

soclayft3 4.674032  ndmi2000 1.397465  

sodepth 4.195942  srr_nm 1.389977  

bio3 4.081133  sopmcal 1.38947  

sopss 3.94883  sopsfsi 1.27356  
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Appendix D: R scripts for spatial models 
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Random forest 

#Random Forest 
#Load spatial data packages 
require(randomForest) 
require(raster) 
require(sp) 
require(rgdal) 
require(maptools) 
require(RStoolbox) 
require(plyr) 
require(caret) 
require(snow) 
 
#set working directory 
setwd("C:\\Thesis_R_data\\210mpix_2019-12-05") 
 
#read in dataset from csv file 
samples <- read.csv("Treemort_std_210mpix_A1.csv") 
samples <- as.data.frame(samples) 
class_data <- cbind(samples$presence, samples[4:45]) 
 
#apply column names to data frame 
names(class_data)[1:43] <- c("class", "bio15", "bio18", "bio3", "bio6", "bio9", "bioppnov", "hugrazall", "soawcft1", 

"soclayft3", "soclayhz", "soclaytot", "sodepth", "sodrexd", "sodrmwd", "sodrsexd", "sodrwd", "sopmcal", 
"sopsashci", "sopscol", "sopscsk", "sopsf", "sopsfl", "sopsfsi", "sopsl", "sopslsk", "sopss", "soshzO", 
"sosrfclpct", "sostxbr", "sostxm", "sostxmco", "soradmay", "cti_nm", "curvpro_nm", "imi_nm", "sar_nm", 
"sds_nm", "sei_nm", "sin_nm", "srr_nm", "trasp_nm", "ndmi2000") 

 
#convert the response variable to a factor data type 
class_data$class <- as.factor(class_data$class) 
 
#take a look at the data structure 
str(class_data) 
 
#======================================= 
#Preliminary tuning 
#tune the model: determine the optimal number of variables to sample at each split (mtry) 
t <- tuneRF(class_data[,-1], class_data[,1], 
            stepFactor = 0.5, 
            plot = TRUE, 
            ntreeTry = 1000, 
            trace = TRUE, 
            improve = 0.05) 
 
#show plot of the model: gives an indication of how many trees are actually needed or useful 
plot(rf.mod) 
 
#======================================= 
#fit the RF model 
 
#all variables model 
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set.seed(42) 
rf.mod <- randomForest(class~ ., data = class_data, ntree=1000, importance=TRUE, do.trace=100, mtry=6, 

keep.forest=TRUE) 
 
#show model results 
rf.mod 
 
#repeat with the other variables groupings 
set.seed(42) 
rf.genericmodel <- randomForest(class~ var1+var2+var3+etc, data=class_data, ntree=1000, importance=TRUE, 

do.trace=100, keep.forest=TRUE) 
 
# show RF results 
rf.genericmodel 
 
# show variable importance in table 
importance (rf.genericmodel) 
 
# show variable importance in plot 
varImpPlot (rf.genericmodel) 
 

Logistic regression 

#Logistic Regression 
 
#load data packages 
library(party) 
library(rpart) 
library(rpart.plot) 
library(rattle) 
library(caret) 
 
setwd("C:\\Thesis_R_data\\210mpix_2019-12-05") 
 
#read in data 
samples <- read.csv("Treemort_std_210mpix_A1.csv") 
samples <- as.data.frame(samples) 
class_data <- cbind(samples$presence, samples[4:45]) 
 
#assign column names 
names(class_data)[1:43] <- c("class", "bio15", "bio18", "bio3", "bio6", "bio9", "bioppnov",  
                             "hugrazall", "soawcft1", "soclayft3", "soclayhz", "soclaytot",  
                             "sodepth", "sodrexd", "sodrmwd", "sodrsexd", "sodrwd", "sopmcal",  
                             "sopsashci", "sopscol", "sopscsk", "sopsf", "sopsfl", "sopsfsi",  
                             "sopsl", "sopslsk", "sopss", "soshzO", "sosrfclpct", "sostxbr",  
                             "sostxm", "sostxmco", "soradmay", "cti_nm", "curvpro_nm", "imi_nm",  
                             "sar_nm", "sds_nm", "sei_nm", "sin_nm", "srr_nm", "trasp_nm", "ndmi2000") 
 
#convert the class data to factor 
class_data$class <- as.factor(class_data$class) 
 
#take a look at the data structure 
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str(class_data) 
 
#fit a logistic regression model using k-fold cross validation 
#define the k-fold validation controls 
fitControl <- trainControl(method='cv', number=5, savePredictions = T) 
 
#all variables model 
#fit the model 
set.seed(42) 
LR1cv <- train(class ~., data=class_data, method='glm', family = binomial(link = "logit"), trControl=fitControl) 
 
# repeat with the other variables groupings 
#fit the model 
set.seed(42) 
LR1cv <- train(class ~ var1+var2+var3+etc, data=class_data, method='glm', family = binomial(link = "logit"), 

trControl=fitControl) 
 
#print cv results 
LR1cv 
summary(LR1cv) 
 
#final selected model 
finLRmod1 <- LR1cv$finalModel 
 
#generate confusion matrix 
confusionMatrix(table((LR1cv$pred)$pred,(LR1cv$pred)$obs),positive='1') 
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Conditional inference trees 

#Conditional Inference Trees 
 
#load data packages 
library(party) 
library(rpart) 
library(rpart.plot) 
library(rattle) 
library(caret) 
 
setwd("C:\\Thesis_R_data\\210mpix_2019-12-05") 
 
#read in data 
samples <- read.csv("Treemort_std_210mpix_A1.csv") 
samples <- as.data.frame(samples) 
class_data <- cbind(samples$presence, samples[4:45]) 
 
#assign column names 
names(class_data)[1:43] <- c("class", "bio15", "bio18", "bio3", "bio6", "bio9", "bioppnov",  
                             "hugrazall", "soawcft1", "soclayft3", "soclayhz", "soclaytot",  
                             "sodepth", "sodrexd", "sodrmwd", "sodrsexd", "sodrwd", "sopmcal",  
                             "sopsashci", "sopscol", "sopscsk", "sopsf", "sopsfl", "sopsfsi",  
                             "sopsl", "sopslsk", "sopss", "soshzO", "sosrfclpct", "sostxbr",  
                             "sostxm", "sostxmco", "soradmay", "cti_nm", "curvpro_nm", "imi_nm",  
                             "sar_nm", "sds_nm", "sei_nm", "sin_nm", "srr_nm", "trasp_nm", "ndmi2000") 
 
#convert the class data to factor 
class_data$class <- as.factor(class_data$class) 
 
#take a look at the data structure 
str(class_data) 
 
#fit a ctree model using k-fold cross validation 
#define the k-fold validation controls 
fitControl <- trainControl(method='cv', number=5, savePredictions = T) 
 
 
#all variables model 
#select the optimal mincriterion parameter and fit the model 
set.seed(42) 
ctree1cv <- train(class~ ., data=class_data, method='ctree', tuneGrid = expand.grid(mincriterion = c(0.75, 0.8, 0.85, 

0.9, 0.95)), trControl=fitControl, minbucket=10) 
 
# repeat with the other variables groupings 
#select the optimal mincriterion parameter and fit the model 
set.seed(42) 
ctree1cv <- train(class~ var1+var2+var3+etc, data=class_data, method='ctree', tuneGrid = 

expand.grid(mincriterion= c(0.75, 0.8, 0.85, 0.9, 0.95)), trControl=fitControl, minbucket=10) 
 
#print cv results 
ctree1cv 
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#generate an aggregated confusion matrix using the cv results 
cfmtab <- confusionMatrix.train(ctree1cv, norm = "none") 
cfmtab 
 
#calculate the sensitivity  
#note: the call says specificity, however, by default caret assumes the first value encountered  
#is the positive. In our case, the first value encountered (0) is the negative. 
specificity(cfmtab$table) 
 
#calculate the sensitivity 
#note:  the call says sensitivity, however, by default caret assumes the second value #encountered is the negative. 
In our case, the second value encountered (1) is the positive. 
sensitivity(cfmtab$table) 
 
#plot the final selected model 
#according to the documentation, this model is fitted on the whole data set using the  
#optimal parameters as determined by the train function 
finmod1 <- ctree1cv$finalModel 
plot(finmod1) 
 
#text output version of the final tree 
finmod1 
 
#======================================= 
#Code used to generate univariate stumps 
 
#fit a ctree model using k-fold cross validation 
#define the k-fold validation controls 
fitControl <- trainControl(method='cv', number=5, savePredictions = T) 
 
#select and fit the model 
set.seed(42) 
ctree1cv <- train(class~ var1, method='ctree', tuneGrid = expand.grid(mincriterion = c(0.75, 0.8, 0.85, 0.9, 0.95)), 

trControl=fitControl, controls = ctree_control(stump = TRUE, minbucket = 25)) 
 
#print cv results 
ctree1cv 
 
#plot the final model 
finmod1 <- ctree1cv$finalModel 
plot(finmod1) 
plot(finmod1, type='simple') 
 
#text output version of the final tree 
finmod1 
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Mortality prediction maps 

#Predict Raster 
#Load spatial data packages 
require(randomForest) 
require(raster) 
require(sp) 
require(rgdal) 
require(maptools) 
require(RStoolbox) 
require(plyr) 
require(caret) 
require(snow) 
 
setwd("C:\\Thesis_R_data\\210mpix_2019-12-05") 
 
#=====image and shapefile processing===== 
img <- brick("A1_finvars_lyrstk.tif") 
shp <- shapefile("A1_final_sample_points_all_clean.shp") 
 
names(img)[1:42] <- c("trasp_nm", "srr_nm", "sostxmco", "sostxm", "sostxbr", "sosrfclpct", "soshzO", "soradmay", 

"sopss", "sopslsk", "sopsl", "sopsfsi", "sopsfl", "sopsf", "sopscsk", "sopscol", "sopsashci", "sopmcal", 
"sodrwd", "sodrsexd", "sodrmwd", "sodrexd", "sodepth", "soclaytot", "soclayhz", "soclayft3", "soawcft1", 
"sin_nm", "sei_nm", "sds_nm", "sar_nm", "ndmi2000", "imi_nm", "hugrazall", "curvpro_nm", "cti_nm", 
"bioppnov", "bio9", "bio6", "bio3", "bio18", "bio15") 

        
#check naming results                
names(img) 
names(shp) 
shp$presence 
 
#extract values from shp 
samples <- extract(img, shp) 
samples <- as.data.frame(samples) 
class_data <- cbind(shp$presence, samples) 
 
#eliminate values with no-data, skip this if already taken care if in previous data preparation 
class_data[2:43][class_data[2:43]==0] <- NA 
class_data<-na.omit(class_data) 
 
names(class_data)[1:43] <- c("class", "trasp_nm", "srr_nm", "sostxmco", "sostxm", "sostxbr", "sosrfclpct", 

"soshzO", "soradmay", "sopss", "sopslsk", "sopsl", "sopsfsi", "sopsfl", "sopsf", "sopscsk", "sopscol", 
"sopsashci", "sopmcal", "sodrwd", "sodrsexd", "sodrmwd", "sodrexd", "sodepth", "soclaytot", "soclayhz", 
"soclayft3", "soawcft1", "sin_nm", "sei_nm", "sds_nm", "sar_nm", "ndmi2000", "imi_nm", "hugrazall", 
"curvpro_nm", "cti_nm", "bioppnov", "bio9", "bio6", "bio3", "bio18", "bio15") 

 
 
#convert the class data to factor 
class_data$class <- as.factor(class_data$class) 
 
#==========  run and save the rf model======= 
set.seed(42) 
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rf.BCfin <- randomForest(class~ bio18+bio3+bio6+ndmi2000, data=class_data, ntree=1000, importance=TRUE, 
do.trace=100, keep.forest=TRUE) 

rf.BCfin 
 
#Save the model 
save(rf.BCfin, file= "rf_BCfin.rda") 
load('rf_BCfin.rda') 
 
#======================================= 
#Generate the predictive maps 
 
#predict and write a classification raster to file  
 
#Order the classes 
classNames=data.frame("name"=unique(class_data$class),"code"=as.numeric(unique(class_data$class))) 

attach(classNames) sort.classnames <- classNames[order(+code),] print(sort.classnames) 
 
#Predict and write the raster to a file  
beginCluster(7) 
 
system.time(preds_rf <- clusterR(img, raster::predict, args = list(model = rf.BCfin), progress="text")) 
 
writeRaster(preds_rf, filename="BCfin_preds",format="GTiff", datatype="INT1U", overwrite=TRUE) endCluster() 
 
#======================================= 
#predict and write a probabilities raster to file 
 
#Order the classes 
classNames=data.frame("name"=unique(class_data$class),"code"=as.numeric(unique(class_data$class))) 
attach(classNames) 
sort.classnames <- classNames[order(+code),] 
print(sort.classnames) 
 
#create an object with predictions from the layerstack 
preds <- predict(img, rf.BCfin, type='prob', index=1:2) 
preds 
 
#multiply probabilities by 100 so that they're integers 
#otherwise ArcMap will round them all to zeros or ones and it won't display right 
preds2 <- preds*100 
preds2 
 
#write the raster using the object preds2 
#band 1 will be probability of survival 
#band 2 will be probability of mortality 
writeRaster(preds2, filename="BCfin_probs",format="GTiff", 
            datatype="INT1U", overwrite=TRUE) 
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Appendix E: Model performance 
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Table E1. Model performance data for Area 1.  

Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

BC2 RF 0.847 0.846 0.904 0.789 -- -- 

SO-3 RF 0.831 0.831 0.816 0.846 -- -- 

TV4 RF 0.831 0.830 0.912 0.748 -- -- 

BC1 RF 0.823 0.822 0.896 0.748 -- -- 

SO RF 0.819 0.818 0.848 0.789 -- -- 

TV1 RF 0.819 0.818 0.856 0.781 -- -- 

TV3 RF 0.819 0.818 0.872 0.764 -- -- 

AV RF 0.815 0.814 0.856 0.772 -- -- 

TV2 RF 0.815 0.814 0.856 0.772 -- -- 

BCfin RF 0.811 0.810 0.872 0.748 -- -- 

BC2-2 RF 0.798 0.798 0.856 0.740 -- -- 

TS RF 0.790 0.790 0.792 0.789 -- -- 

TS-2 RF 0.766 0.766 0.784 0.748 -- -- 

TP RF 0.633 0.633 0.640 0.626 -- -- 

TP-3 RF 0.617 0.617 0.626 0.608 -- -- 

HU RF 0.540 0.537 0.920 0.155 -- -- 

TV4 LR 0.819 0.818 0.864 0.772 <2e-16 223 

AV-2 LR 0.811 0.810 0.848 0.772 <2e-16 219 

TV4-1 LR 0.811 0.810 0.848 0.772 <2e-16 222 

TV3 LR 0.798 0.798 0.832 0.764 <2e-16 235 

AV-1 LR 0.798 0.798 0.840 0.756 <2e-16 220 

TV2-1 LR 0.790 0.790 0.888 0.691 <2.2e-16 255 

TV1-1 LR 0.782 0.782 0.816 0.748 <2e-16 237 

TV2 LR 0.782 0.782 0.864 0.699 <2.2e-16 256 

BC1-1 LR 0.782 0.782 0.872 0.691 <2.2e-16 247 

AV LR 0.778 0.778 0.792 0.764 <2e-16 225 

TV1 LR 0.766 0.766 0.800 0.732 <2e-16 247 

BC2-1 LR 0.766 0.766 0.808 0.724 <2e-16 240 

BC1 LR 0.766 0.765 0.856 0.675 <2.2e-16 249 

TS LR 0.762 0.762 0.800 0.724 <2e-16 269 

BC2 LR 0.758 0.758 0.808 0.707 <2e-16 238 

SO LR 0.710 0.709 0.776 0.642 3.67E-11 277 

TS-1 LR 0.669 0.669 0.744 0.594 1.03E-07 302 

TP-2 LR 0.637 0.637 0.672 0.602 1.64E-05 327 

TP-1 LR 0.637 0.636 0.736 0.537 1.64E-05 326 

SO-1 LR 0.629 0.629 0.640 0.618 4.92E-05 321 

TP LR 0.625 0.625 0.608 0.642 8.31E-05 327 
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Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

SO-2 LR 0.625 0.625 0.624 0.626 8.31E-05 320 

HU LR 0.540 0.537 0.920 0.155 0.1402 344 

TV1 CTREE 0.790 0.789 0.944 0.634 -- -- 

AV-1 CTREE 0.778 0.777 0.968 0.585 -- -- 

BC1 CTREE 0.778 0.777 0.968 0.585 -- -- 

BC2 CTREE 0.778 0.777 0.968 0.585 -- -- 

TV2 CTREE 0.778 0.777 0.968 0.585 -- -- 

AV CTREE 0.774 0.773 0.920 0.626 -- -- 

TV3 CTREE 0.762 0.762 0.792 0.732 -- -- 

TV4 CTREE 0.758 0.757 0.832 0.683 -- -- 

SO CTREE 0.746 0.746 0.728 0.764 -- -- 

TS CTREE 0.702 0.701 0.744 0.659 -- -- 

TP CTREE 0.609 0.609 0.600 0.618 -- -- 

HU CTREE 0.504 0.500 0.944 0.057 -- -- 
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Table E2. Model performance data for Area 2.  

Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

BC2 RF 0.822 0.822 0.784 0.859 -- -- 

TV4 RF 0.812 0.812 0.784 0.839 -- -- 

BCfin RF 0.812 0.812 0.776 0.847 -- -- 

TV2 RF 0.810 0.810 0.764 0.855 -- -- 

TV1 RF 0.808 0.808 0.788 0.827 -- -- 

TV3 RF 0.802 0.802 0.768 0.835 -- -- 

AV RF 0.792 0.792 0.756 0.827 -- -- 

BC1 RF 0.774 0.774 0.748 0.799 -- -- 

SO-5 RF 0.728 0.728 0.620 0.835 -- -- 

SO RF 0.717 0.718 0.624 0.811 -- -- 

TS-4 RF 0.717 0.718 0.676 0.759 -- -- 

TS RF 0.717 0.717 0.700 0.735 -- -- 

TP RF 0.581 0.581 0.564 0.598 -- -- 

TP-5 RF 0.553 0.553 0.560 0.546 -- -- 

HU RF 0.553 0.553 0.720 0.386 -- -- 

TP-6 RF 0.541 0.541 0.548 0.534 -- -- 

AV-4 LR 0.784 0.784 0.752 0.815 <2e-16  476 

BC1-2 LR 0.778 0.778 0.728 0.827 <2e-16 501 

TV4-2 LR 0.778 0.778 0.792 0.763 <2e-16 483 

BC1 LR 0.776 0.776 0.732 0.819 <2e-16 504 

AV-3 LR 0.770 0.770 0.732 0.807 <2e-16 484 

TV4 LR 0.770 0.770 0.788 0.751 <2e-16 487 

TV1-2 LR 0.766 0.766 0.752 0.779 <2e-16 503 

TV2 LR 0.766 0.766 0.756 0.775 <2e-16 502 

BC2-3 LR 0.760 0.760 0.736 0.783 <2e-16 501 

TV3 LR 0.754 0.754 0.704 0.803 <2e-16 507 

BC2 LR 0.754 0.754 0.724 0.783 <2e-16 503 

TV1 LR 0.750 0.750 0.704 0.795 <2e-16 507 

AV LR 0.742 0.742 0.720 0.763 <2e-16 497 

TS LR 0.687 0.688 0.608 0.767 <2.2e-16 568 

TS-3 LR 0.673 0.674 0.592 0.755 5.22E-15 586 

SO LR 0.663 0.664 0.544 0.783 1.76E-13 583 

SO-4 LR 0.615 0.616 0.340 0.892 1.88E-07 615 

TP-4 LR 0.605 0.605 0.616 0.594 1.85E-06 655 

TP LR 0.575 0.575 0.584 0.566 5.31E-04 663 

HU LR 0.553 0.553 0.720 0.386 0.01116 689 

AV-3 CTREE 0.780 0.780 0.724 0.835 -- -- 
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Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

BC2 CTREE 0.774 0.774 0.744 0.803 -- -- 

TV1 CTREE 0.772 0.772 0.752 0.791 -- -- 

TV3 CTREE 0.772 0.772 0.760 0.783 -- -- 

BC1 CTREE 0.768 0.768 0.716 0.819 -- -- 

TV4 CTREE 0.762 0.762 0.708 0.815 -- -- 

TV2 CTREE 0.762 0.762 0.712 0.811 -- -- 

AV CTREE 0.750 0.750 0.664 0.835 -- -- 

SO CTREE 0.685 0.685 0.628 0.743 -- -- 

TS CTREE 0.665 0.666 0.560 0.771 -- -- 

TP CTREE 0.615 0.615 0.528 0.703 -- -- 

HU CTREE 0.553 0.553 0.720 0.386 -- -- 

 

  



193 

Table E3. Model performance data for Area 3.  

Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

AV RF 0.758 0.758 0.768 0.748 -- -- 

BC2 RF 0.756 0.756 0.760 0.752 -- -- 

TV3 RF 0.750 0.750 0.768 0.732 -- -- 

TV1 RF 0.748 0.748 0.768 0.728 -- -- 

TV4 RF 0.744 0.744 0.736 0.752 -- -- 

TV2 RF 0.728 0.728 0.740 0.716 -- -- 

BCfin RF 0.722 0.722 0.732 0.712 -- -- 

BC1 RF 0.720 0.720 0.728 0.712 -- -- 

BC2-5 RF 0.696 0.696 0.724 0.668 -- -- 

SO RF 0.670 0.670 0.688 0.652 -- -- 

TS RF 0.666 0.666 0.680 0.652 -- -- 

SO-8 RF 0.658 0.658 0.660 0.656 -- -- 

TS-7 RF 0.628 0.628 0.664 0.592 -- -- 

TP RF 0.602 0.602 0.616 0.588 -- -- 

HU RF 0.544 0.544 0.520 0.568 -- -- 

TP-8 RF 0.540 0.540 0.560 0.520 -- -- 

TV3 LR 0.680 0.680 0.732 0.628 2.90E-16 630 

AV LR 0.678 0.678 0.692 0.664 6.17E-16 605 

TV4-3 LR 0.672 0.672 0.712 0.632 5.64E-15 608 

BC2-4 LR 0.670 0.670 0.728 0.612 1.16E-14 628 

TV1 LR 0.666 0.666 0.672 0.660 4.76E-14 639 

TV4 LR 0.664 0.664 0.700 0.628 9.51E-14 608 

AV-6 LR 0.662 0.662 0.684 0.640 1.89E-13 610 

BC2 LR 0.660 0.660 0.720 0.600 3.70E-13 632 

AV-5 LR 0.658 0.658 0.680 0.636 7.21E-13 609 

TV1-3 LR 0.654 0.654 0.672 0.636 2.67E-12 634 

TV2-2 LR 0.652 0.652 0.712 0.592 5.06E-12 650 

BC1 LR 0.648 0.648 0.724 0.572 1.77E-11 642 

BC1-3 LR 0.646 0.646 0.716 0.576 3.28E-11 640 

TV2 LR 0.646 0.646 0.700 0.592 3.28E-11 652 

TS-6 LR 0.632 0.632 0.624 0.640 1.91E-09 659 

TS-5 LR 0.620 0.620 0.612 0.628 4.48E-08 660 

TS LR 0.612 0.612 0.600 0.624 3.11E-07 660 

SO-6 LR 0.588 0.588 0.636 0.540 4.81E-05 672 

SO-7 LR 0.580 0.580 0.568 0.592 2.00E-04 672 

SO LR 0.578 0.578 0.572 0.584 2.81E-04 678 

TP-7 LR 0.572 0.572 0.608 0.536 7.36E-04 681 
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Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

TP LR 0.558 0.558 0.584 0.532 5.36E-03 679 

HU LR 0.544 0.544 0.520 0.568 2.72E-02 693 

AV CTREE 0.682 0.682 0.696 0.668 -- -- 

TV4 CTREE 0.678 0.678 0.692 0.664 -- -- 

TV1 CTREE 0.676 0.676 0.644 0.708 -- -- 

TV3 CTREE 0.674 0.674 0.704 0.644 -- -- 

BC2 CTREE 0.672 0.672 0.700 0.644 -- -- 

TV2 CTREE 0.672 0.672 0.696 0.648 -- -- 

BC1 CTREE 0.666 0.666 0.668 0.664 -- -- 

AV-5 CTREE 0.650 0.650 0.688 0.612 -- -- 

TP CTREE 0.554 0.554 0.552 0.556 -- -- 

TS CTREE 0.546 0.546 0.560 0.532 -- -- 

SO CTREE 0.528 0.528 0.488 0.568 -- -- 

HU CTREE 0.500 0.500 0.380 0.620 -- -- 
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Table E4. Model performance data for Area 4.  

Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

TV1 RF 0.796 0.796 0.794 0.797 -- -- 

BC2 RF 0.790 0.790 0.774 0.805 -- -- 

AV RF 0.777 0.777 0.790 0.764 -- -- 

BCfin RF 0.765 0.765 0.758 0.772 -- -- 

TV3 RF 0.765 0.765 0.758 0.772 -- -- 

TV4 RF 0.745 0.745 0.718 0.772 -- -- 

TV2 RF 0.741 0.741 0.726 0.756 -- -- 

BC1 RF 0.739 0.739 0.754 0.724 -- -- 

BC2-8 RF 0.735 0.735 0.718 0.752 -- -- 

TS-9 RF 0.705 0.704 0.726 0.683 -- -- 

TS RF 0.674 0.674 0.685 0.663 -- -- 

SO RF 0.654 0.654 0.669 0.638 -- -- 

SO-11 RF 0.650 0.650 0.633 0.667 -- -- 

TP-10 RF 0.611 0.611 0.621 0.602 -- -- 

TP RF 0.607 0.607 0.601 0.614 -- -- 

HU RF 0.541 0.539 0.823 0.256 -- -- 

AV-7 LR 0.713 0.713 0.726 0.699 <2e-16 571 

AV-8 LR 0.709 0.708 0.718 0.699 <2e-16 567 

BC2 LR 0.705 0.704 0.710 0.699 <2e-16 578 

BC2-6 LR 0.700 0.700 0.710 0.691 <2e-16 576 

BC2-7 LR 0.696 0.696 0.714 0.679 <2e-16 576 

TV4 LR 0.690 0.690 0.718 0.663 <2e-16 604 

BC1 LR 0.684 0.684 0.686 0.683 <2e-16 615 

AV LR 0.684 0.684 0.722 0.646 <2e-16 587 

TV3 LR 0.672 0.672 0.669 0.675 1.59E-14 589 

TV2-3 LR 0.656 0.656 0.657 0.655 3.68E-12 617 

TV1-4 LR 0.648 0.648 0.673 0.622 4.53E-11 601 

TV2 LR 0.644 0.644 0.621 0.667 1.51E-10 619 

TV1 LR 0.642 0.642 0.665 0.618 2.72E-10 604 

TS LR 0.640 0.640 0.682 0.598 4.86E-10 643 

TS-8 LR 0.622 0.621 0.653 0.589 6.12E-08 651 

SO LR 0.603 0.603 0.589 0.618 3.92E-06 653 

SO-10 LR 0.585 0.585 0.593 0.577 1.30E-04 668 

TP LR 0.579 0.579 0.682 0.476 3.61E-04 664 

TP-9 LR 0.567 0.566 0.746 0.386 2.27E-03 667 

SO-9 LR 0.545 0.544 0.581 0.508 3.25E-02 668 

HU LR 0.541 0.539 0.823 0.256 0.04792 684 
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Model 
name 

Model 
type 

Overall 
accuracy 

Balanced 
accuracy 

Sensitivity Specificity P-Value 
[Acc > NIR] 

AIC 

TV2 CTREE 0.690 0.691 0.573 0.809 -- -- 

BC1 CTREE 0.682 0.682 0.649 0.715 -- -- 

BC2 CTREE 0.680 0.681 0.597 0.764 -- -- 

TV3 CTREE 0.672 0.673 0.512 0.833 -- -- 

AV CTREE 0.672 0.672 0.577 0.768 -- -- 

AV-7 CTREE 0.662 0.662 0.577 0.748 -- -- 

TV4 CTREE 0.660 0.660 0.560 0.760 -- -- 

TV1 CTREE 0.654 0.654 0.556 0.752 -- -- 

TP CTREE 0.593 0.593 0.722 0.463 -- -- 

SO CTREE 0.561 0.560 0.690 0.431 -- -- 

TS CTREE 0.551 0.550 0.718 0.382 -- -- 

HU CTREE 0.541 0.539 0.823 0.256 -- -- 
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Appendix F: Univariate conditional inference stumps 
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Figure F1. Conditional inference tree univariate stumps for the variable bio3, isothermality. Dark gray represents 
mortality presence and light gray indicates mortality absence. The relationship in Area 3 was too weak for the 
model to run, hence no image. 

 

Figure F2. Conditional inference tree univariate stumps for the variable bio6, minimum temperature of the coldest 
month. Dark gray represents mortality presence and light gray indicates mortality absence. 
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Figure F3. Conditional inference tree univariate stumps for the variable bio9, mean temperature of the driest 
quarter. Dark gray represents mortality presence and light gray indicates mortality absence. 

 

Figure F4. Conditional inference tree univariate stumps for the variable bio15, precipitation seasonality (coefficient 
of variation). Dark gray represents mortality presence and light gray indicates mortality absence. 
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Figure F5. Conditional inference tree univariate stumps for the variable bio18, precipitation of warmest quarter. 
Dark gray represents mortality presence and light gray indicates mortality absence. 

 

Figure F6. Conditional inference tree univariate stumps for the variable bioppnov, November precipitation. Dark 
gray represents mortality presence and light gray indicates mortality absence. 
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Figure F7. Conditional inference tree univariate stumps for the variable ndmi2000, pre-drought NDMI. Dark gray 
represents mortality presence and light gray indicates mortality absence. 

 

Figure F8. Conditional inference tree univariate stumps for the variable soawcft1, AWC of the top 31 cm (1 ft) of 
soil. Dark gray represents mortality presence and light gray indicates mortality absence. The relationship in Area 3 
was too weak for the model to run, hence no image. 
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Figure F9. Conditional inference tree univariate stumps for the variable soclaytot, clay percent of top 122 cm (4 ft) 
of soil profile (weighted average). Dark gray represents mortality presence and light gray indicates mortality 
absence. 

 

Figure F10. Conditional inference tree univariate stumps for variable sosrfclpct, clay percent of the surface soil. 
Dark gray represents mortality presence and light gray indicates mortality absence. 


