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ABSTRACT 

Three Neotropical species of nectar-feeding bats reach their northernmost extent in 

the southwestern United States. Plants of the genus Agave provide important nectar 

resources to these long-distance migrants, lesser long-nosed bats (Leptonycteris 

yerbabuenae), Mexican long-nosed bats (Leptonycteris nivalis), and Mexican long-

tongued bats (Choeronycteris mexicana), throughout their ranges. Though regions 

with ample Agave may provide high quality habitat, no studies have explicitly 

modeled the distribution of Agave resources and strategically ground validated 

predictions. In this study, I utilize maximum entropy modeling (MaxEnt) to predict 

the distribution of an important summer resource, Agave palmeri, in the southwestern 

United States. I then ground validated the species distribution model in southwestern 

New Mexico and southern Arizona to test model accuracy and evaluate the reliability 

of commonly used presence threshold methods. In Chapter 1, I provide a technical 

background on the methods employed in this project, followed by a write up of the 

project in manuscript format in Chapter 2. I will discuss conservation implications 

and recommend topics for further study in Chapter 3. The results of this project 

indicate that distribution modeling for plants ought to be used as a biogeographical 

tool to inform more detailed studies, rather than as an indicator of species presence or 

absence. While model accuracy was low, using a predictive model to stratify field 

sites enhanced study efficiency. This study may indicate regions where restoration of 

Agave populations is warranted to enhance nectarivorous bat habitat. 
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INTRODUCTION 

 1.1 Introduction 

In order to conserve and protect species, we must first know something about 

their distribution. In other words, where can we expect to find them and why? These 

questions can be answered in part by generating species distribution models. When 

modeling the distribution of species, researchers are confronted with the choice 

between presence-absence and presence-only methods. Presence-absence methods are 

often preferred in that they allow researchers to estimate detection probabilities of a 

species, yet there are many cases in which the collection of absence data may be 

infeasible, or when an abundance of presence records already exists. However, when 

using pre-existing records, such as museum or herbarium records, many biases may 

be incurred; data may not have been collected randomly, and spatial autocorrelation 

may be present. Taking these issues into account, Phillips et al. (2006) developed a 

method for modeling species distribution using presence-only data, known as 

maximum entropy modeling or MaxEnt.  

 In this project, I utilize MaxEnt to model the distribution of a patchy, non-

clonal, long-lived, semelparous plant, Agave palmeri (Engelmann 1875), across its 

range in the southwestern United States. Agave palmeri is a paniculate agave of the 

subgenus Agave and Ditepalae Group (Gentry, 1982). This agave plant is an 

important nectar source for nectarivorous bats in the southwestern United States 

(Slauson, 1999; Ober and Steidl, 2004; Scott, 2004; England, 2012), and is the 

dominant summer food source in the only region in the United States where all three 
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species of migratory nectarivorous bats are sympatric (Arita and Humphrey, 1988; 

Hoyt et al., 1994). In Figure 1.1, a map of confirmed occurrences for migratory 

nectarivorous bats in the southwestern United States is provided.    

     

 Figure 1.1 Confirmed presence records of migratory nectarivorous bats in the 

Southwestern United States 

 

 Due to the importance of Agave spp. in this portion of the range of 

nectarivorous bats, restoration and protection of Agave populations are recommended 

in recovery plans for both Leptonycteris spp. (USFWS, 1994; USFWS, 1995). 

However, few studies have investigated specific habitat requirements for Agave spp. 

in the southwestern United States. Additionally, no studies have explicitly modeled 
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the distribution of Agave resources and strategically ground validated predictions. 

Taking these issues into account, the overall goals of this project are to determine the 

probability of presence of A. palmeri throughout the southwestern United States via a 

distribution model and to utilize this model to inform a ground-validation study to 

assess model accuracy and evaluate presence threshold methods. Because land 

managers have expressed interest in the distribution of A. palmeri to better understand 

the potential distribution of nectarivorous bats, I chose to employ a set of standard 

and repeatable methods to model the potential distribution of A. palmeri using a 

model selection approach. 

 I chose to utilize MaxEnt to meet the goals of this project for several reasons. 

First, A. palmeri exhibits a metapopulation structure in which many patches of plants 

occur across a wide range, and may be so isolated that patches can be considered 

subpopulations, relying on pollinators for functional connectivity (Gentry, 1982). 

These patches occur in rugged terrain, with accessibility limited by both natural 

features and land ownership status. Purely random surveys for this species have 

resulted in few detections (S. Deeley, unpublished data), and a predictive model with 

which to inform survey efforts was warranted to enhance study efficiency and 

effectiveness. Secondly, a multitude of presence records for A. palmeri were readily 

available from online herbaria databases, from a previous study conducted by a 

graduate student (S. Deeley, unpublished data), and from the local district botanist at 

the Las Cruces Bureau of Land Management District Office (P. Alexander, 

unpublished data). Each of these data sources presents various data collection biases, 
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which can be effectively dealt with in MaxEnt (Phillips et al., 2006; Elith et al., 

2011). The distribution model generated in MaxEnt informed a ground-validation 

study to see how well the model performed and to evaluate presence threshold 

methods. This study is part of a larger project assessing habitat suitability for 

nectarivorous bats throughout the southwestern United States.  

 In this introductory chapter, I will provide a more in depth background on 

MaxEnt and model selection methods employed in this project. In Chapter 2, I will 

present the methods and results of this study in manuscript format. In Chapter 3, I 

will discuss conservation implications of this project and recommend topics for 

further study. As a general conclusion, this study highlights the importance of 

considering species’ reproductive biology when generating species distribution 

models and assessing their accuracy. Because plants have much more limited 

dispersal capabilities than animals, distribution modeling of plants may serve as a 

general biogeographical tool with which to inform further studies in which more 

detailed habitat associations are assessed. Nevertheless, distribution modeling may 

also effectively represent the metapopulation framework in which long-lived species 

colonize new patches and become extirpated from others, highlighting potentially 

important restoration areas. All in all, this study highlights the efficacy of using 

presence-only species distribution modeling to allocate survey efforts when studying 

patchy species with specific habitat preferences across a large range. This method for 

stratifying field surveys can help field researchers increase study efficiency, which is 
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an important issue when dealing with the budgetary, staffing, and/or timeline 

restrictions with which many researchers are faced.  

1.2 Species Distribution Modeling 

 When modeling the spatial dynamics of particularly rare, patchy, or elusive 

species, methods that allow researchers to estimate detection probabilities are often 

preferred. Integrating presence-absence data into an occupancy model is widely used 

in biological sciences, as this method can account for imperfect species detections 

(MacKenzie et al., 2002; Olson et al., 2005; MacKenzie et al., 2006; Nichols et al., 

2008; Robinson et al., 2014). Despite the advantages of occupancy modeling, there 

are many instances in which the coordinated collection of presence-absence data 

across multiple sites is logistically infeasible. This is often the case for species with 

relatively large ranges or in remote tropical areas where biodiversity may be 

decreasing rapidly (Phillips et al., 2006).  

When absence data is unavailable or unreliable, presence-only species 

distribution modeling can become a viable alternative. Species distribution modeling 

is used to predict a species’ spatial relationships with both biotic and abiotic features 

on the landscape. Many biological researchers utilize multivariate analysis to 

understand relationships between species and landscape features (Gorressen et al., 

2005) or tests of proportion between capture numbers and landscape features (Rojas-

Martínez et al., 1999).  These methods determine whether the strength of the 

association with features is greater or less than that which would be expected given 

random distribution. Traditional linear modeling methods are effective at revealing 
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ecological relationships at various scales (Rojas-Martínez et al., 1999; Gorressen et 

al., 2005; Rainho and Palmeirin, 2011), yet may rely on the construction of 

directional hypothesis for species which we may know little about (Gorressen et al., 

2005).  

Presence-only models can be highly sensitive to sampling biases (Elith et al., 

2011). Consequently, these methods are more appropriate for cases in which presence 

records have been collected systematically through formal biological surveys (Elith et 

al., 2011). It is for these reasons that traditional methods in presence-only modeling 

are unable to effectively utilize important sources of presence data, such as museum 

and herbarium collections (Elith et al., 2011). Software developed by Phillips et al. 

(2006), known as MaxEnt, helps reduce the biases associated with presence-only 

species distribution modeling by utilizing pseudo-absence data that is subject to the 

same biases as the input data (Phillips et al., 2006; Phillips et al., 2009).  Furthermore, 

software that utilizes an information theoretic approach (see section 1.3) has since 

been developed to integrate model selection into MaxEnt, and additional data 

processing methods such as spatial filtering and species-specific tuning have been 

recommended in the literature to help further reduce model biases (Warren, 2010; 

Anderson and Gonzalez, 2011; Warren and Seifert, 2011; Boria et al., 2014; Warren 

et al., 2014).  

Since its development, MaxEnt has been widely applied to species distribution 

modeling for flora and fauna alike. MaxEnt has been proven as an effective way to 

predict the distribution of species at multiple spatial and temporal scales (Razgour et 
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al., 2011; Bellamy et al., 2013; Hayes et al., 2015), and performs well with relatively 

small sample sizes and multiple sources of input data (Frey et al., 2013; Van Proosdij 

et al., 2015). MaxEnt generates two probability densities, one from the landscape and 

one from the presence data, and minimizes the relative entropy between them (Elith et 

al., 2011). MaxEnt shows better discrimination between suitable and unsuitable areas 

for a species compared to another commonly used presence-only method, Genetic 

Algorithm for Rule-Set Prediction (Phillips et al., 2006). Moreover, MaxEnt is more 

effective at estimating species’ realized distributions (Rebelo and Jones, 2010), and 

generates robust models with fairly small sample sizes, though the required sample 

size is dependent on the size of the species range (Van Proosdij et al., 2015).   

MaxEnt models can be produced quickly, as data preparation is often the most 

time-consuming component of MaxEnt modeling (Young et al., 2011). The user-

friendliness of MaxEnt, however, allows it to be easily misused. While MaxEnt 

provides a great contribution to conservation efforts, it is important to ensure it is 

used appropriately so as to not generate misleading or erroneous models. Ensuring 

that model inputs are biologically relevant and ensuring that the most relevant layers 

are utilized in the final model can help generate models that lead to effective 

conservation and management strategies. This can be achieved with a thorough 

literature review of the species being considered, an understanding of the statistics 

behind model selection and model validation, and appropriate data preparation and 

spatial filtering. Ground validation, a step that is often overlooked, can also help 

inform model accuracy (Searcy and Shaffer, 2014). Ground validation has the 
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potential to lead to species detections in areas in which the species has not previously 

been documented (Rebelo and Jones, 2010), may provide a better method for 

statistical comparison of multiple models (Searcy and Shaffer, 2014), and can be used 

to evaluate threshold selection methods for determining probabilities at which a 

species is likely to be present in each grid cell (Nenzén and Araújo, 2011). 

1.3 Model Selection with Presence-Only Models 

Model selection in MaxEnt is typically based on the area under the receiver 

operating-characteristic curve (AUC), which can be defined as the probability that the 

model scores presence sites higher than absence sites (Phillips et al., 2009). The value 

of AUC ranges from 0 to 1, with a score closer to 1 indicating perfect discrimination 

between suitable and non-suitable sites, a score of 0.5 indicating random 

discrimination between suitable and non-suitable sites, and a score closer to 0 

indicating less than random discrimination (Phillips et al., 2009). In the Figure 1.2, an 

example of the AUC curve using the species distribution model for Agave palmeri is 

provided. The black line represents an AUC value of .5, indicative of random 

predictive ability. Anything over the black line predicts species distribution at least 

better than random, while an AUC of 1 represents a model which perfectly represents 

reality.  

AUC is the most commonly used metric for model selection in MaxEnt 

(Bellamy et al., 2013), but it may overestimate model accuracy or lead to the 

selection of overly complex models (Warren and Seifert, 2011; Searcy and Shaffer, 

2014). Three forms of AUC that can be utilized in model selection include maximum 
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training AUC, maximum test AUC, and minimum distance between training and test 

data. Maximum training AUC selects the model that maximizes AUC calculated from 

data that was used to create the model. Consequently, this is prone to selecting 

models that may over fit the data. Maximum test AUC uses test data that was 

withheld from the model construction to fit the best model. Minimum difference 

between training and test data helps to minimize the risk of over-parameterization, yet 

is reliant on a large sample size (Warren and Seifert, 2011).  

 

 Figure 1.2 Area under the receiver operator characteristic curve (AUC) for A. 

palmeri distribution model 

 

Model production in MaxEnt utilizes what is termed L1 regularization, which 

minimizes the value of the equation in Figure 1.3 (Phillips et al, 2006). In the 

equation, the severity of the penalty term, β, is either accepted as the default setting or 



10 
 

determined by the user (Warren and Seifert, 2011). This allows the user to determine 

how severely to punish additional and perhaps unnecessary parameters in the model 

so as to not over-fit the model. Determining how severely to penalize model 

complexity can be arbitrary. Additionally, as noted above, utilizing AUC as a model 

selection metric may lead to selecting models with more parameters (Warren and 

Seifert, 2011; Searcy and Shaffer, 2014). Information criterion metrics that utilize the 

principle of parsimony to penalize overly complex models may help avoid the issue 

of over parameterization and allow the regularization parameter in MaxEnt to be set 

non-arbitrarily.  

 
Figure 1.3 Maxent Equation. In this equation, the first term is the log loss, λj, 

while the second is the set of weights for the features upon which the model is built, 

along with a set of penalty terms, βj (Phillips et al., 2006).  

 

Information criterion approaches provide explicit criteria for penalizing model 

complexity and selecting the appropriate model (Warren and Seifert, 2011). One such 

method is using Akaike’s Information Criterion (AIC), which utilizes maximum 

likelihood theory and the principal of parsimony to select the model that best fits the 

data without fitting an overly complex model (see Figure 1.4; Burnham and 

Andersen, 2002). Model selection using AIC is becoming widely accepted in 

ecological modeling (Johnson and Omland, 2004; Anderson, 2008). The use of AIC 
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for competing models can help reveal complex ecological relationships that cannot be 

depicted with null hypothesis testing (Anderson, 2008).  

               

  

 
Figure 1.4. Akaike’s Information Criterion (AIC) and Akaike’s Information 

Criterion adjusted for small sample size (AICc). Here, L is the maximum likelihood 

function, n is the sample size, and k is the number of parameters (Burnham and 

Andersen, 2002).  

 

For spatial models, the program ENMTools (Warren et al., 2008; Warren et 

al., 2010) works in conjunction with MaxEnt by setting the regularization parameter 

according to that which achieves parsimony determined by an information criterion 

metric (Searcy and Shaffer, 2014; Warren et al., 2014). In a simulation study 

comparing model selection methods, Warren and Seifert (2011) found that AICc (AIC 

adjusted for small sample size, see Figure 1.4; Burnham and Anderson, 2002) 

outperformed all AUC-based methods except for minimum AUC difference when 

sample size was 1000. Information criterion approaches to model selection may be 

significantly more useful when sample sizes are small (Warren and Seifert, 2011). 

However, it is important to note that information criteria are not a test, but rather a 

guideline for model selection that utilize non-arbitrary terms (Burnham and 
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Andersen, 2002). While it is important to take these considerations into account when 

choosing a method for model selection, it is also necessary to consider the potential 

benefits of ground-validating any model that was obtained using presence-only data.               

1.4 Accuracy Assessment  

Habitat distribution maps can be continually updated with new information, 

and are never truly a finished product (Boykin et al., 2007). Ground validation is an 

important part of this process, but this step in the modeling process is often 

overlooked. Ground validation presents the opportunity to detect species outside of 

previously surveyed areas and may effectively allocate survey efforts for rare or 

cryptic species (Rebelo and Jones, 2010; Searcy and Shaffer, 2014). Statistical 

measurements behind ground validation include omission, commission, the kappa 

statistic, and the true skill statistic (TSS). Omission errors can be defined as false 

absences, or the failure to predict that a species will exist in an area that it actually 

occupies. Commission is the opposite of omission in that it predicts a species will 

occupy an area that may actually be unsuitable (Rebelo and Jones, 2010). Distribution 

models generated for conservation guidelines may tend to err on the side of 

commission rather than omission errors (Boykin et al., 2007). The kappa statistic is a 

commonly used accuracy assessment metric, with a kappa value of 1 indicating 

perfect agreement between test data and model predictions, 0 indicating an agreement 

that is no better than random, and values closer to -1 indicating agreement that is 

worse than random (Allouche et al., 2006; Rebelo and Jones, 2010).  
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The kappa statistic is criticized for being prone to statistical artifacts based on 

species prevalence (Allouche et al. 2006), which can be defined as the percentage of a 

species range that is actually occupied (Van Proosdij et al., 2015). Allouche et al. 

(2006) show that another metric, the true skill statistic (TSS), does not produce the 

inherent biases of the kappa statistic, yet it retains the advantages of the kappa 

statistic. Figure 1.5 shows how each of these statistics is calculated based on an error 

matrix of omission and commission (Allouche et al., 2006). These metrics are each 

threshold dependent; a threshold from which to convert a continuous probability of 

occurrence surface into a binary presence-absence model must be established in order 

to obtain these metrics.  The top of the figure shows an error matrix from which true 

presences (a), true absences (d), false presences (b), and false absences (c) can be 

determined using the ground validation dataset. The bottom portion of the figure 

shows how accuracy metrics can be calculated using a, b, c, and d. 

1.5 Establishing a Presence Threshold  

 When generating species distribution models in which the output consists of a 

continuous probability surface with values ranging from 0 to 1, it is often necessary to 

convert these continuous values into a binary format to predict species presence or 

absence. Such is the case when estimating niche breadth, niche overlap, and niche 

contraction or expansion under climate change scenarios (Nenzén and Araújo, 2011), 

and when using threshold-dependent accuracy assessment metrics (Liu et al., 2011). 

However, converting a continuous probability surface into a binary format relies on  
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determining threshold values which are often arbitrary and may even lack ecological 

basis (Liu et al., 2005; Warren et al., 2008; Nenzén and Araújo, 2011). Though 

determining these thresholds values can be problematic (Liu et al., 2005; Warren et 

al., 2008; Warren et al., 2010), accuracy assessment of distribution models is reliant 

on this presence threshold from which false presences, false absences, and accurate 

predictions can be determined.  

 

Ground validation dataset 
 

Presence Absence 

Model 

    

Presence a b 

Absence c d 
 

Measure Formula 

Overall accuracy (a + d) / n 

Sensitivity a / (a + c) 

Specificity d / (b+ d) 

Kappa Statistic ([(a + d) / n)] - ((a + b)(a + c) + (c + d)(d + b))) / n2 

1 - ((a + b)(a + c) + (c + d)(d +b))/ n2 

TSS sensitivity + specificity - 1 

 

Figure 1.5. Error matrix and formulae for accuracy assessment (adapted from 

Allouche et al., 2006). In each calculation, n = a + b + c + d.   

 The most commonly used method for presence-absence threshold selection, a 

fixed value approach (often fixed at 0.5) has been shown to perform the worst 

amongst other threshold section methods (Liu et al., 2005). In a model-based study, 

Liu et al. (2005) found that the best approaches were using a prevalence approach,  
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average probability or suitability approach, sensitivity-specificity sum maximization 

approach, sensitivity-specificity equality approach, and a receiver operating 

characteristic curve (ROC) approach. In a later study, Liu et al. (2016) found that 

maximizing the sum of the sensitivity and specificity (MaxSSS) satisfies the criteria 

of objectivity, equality, and discriminability for threshold selection. This method has 

also been shown to perform well among multiple datasets (Liu et al., 2016). There are 

many factors to consider when selecting a threshold method, such as species 

reproductive biology, dispersal capabilities, and complexity of the distribution model 

from which predictions will be made. Due to disagreements in the literature regarding 

the best threshold methods, multiple threshold methods will be applied to the 

distribution model in this study, and an accuracy-assessment approach will be 

followed to select the best method based on a ground validation dataset.  

1.6 Project Methods 

 Since the default regularization parameter (β =1) in MaxEnt may have been 

tuned in a way that is not appropriate for all ecological systems and can lead to over-

parameterization (Warren and Seifert, 2011; Warren et al., 2014), Warren et al. 

(2014) developed a standardized workflow from which to tune β, select variables 

based on percent contribution and correlation coefficients, and to re-tune β for the 

final variable set by utilizing AICc in either ENMTools or the MaxEnt Variable 

Selection Package in program R. In this project, I utilize these methods to establish a 

framework with which to model the distribution of Agave palmeri in the southwestern 

United States.  
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To generate this model, I integrated presence records for A. palmeri from the 

Global Biodiversity Information Facility (gbif.org), SEINet, from the Bureau of Land 

Management, Las Cruces District Office (P. Alexander, unpublished data), and from 

a previous study in southwestern New Mexico (S. Deeley, unpublished data). Using 

ENMTools (Warren et al., 2010), duplicate records were trimmed. Since multiple 

sources of presence records were utilized, and each had a different or unknown 

sampling methodology, I used the SDM Toolbox in ArcGIS 10.4.1 to rarefy 

occurrence records with a 1 km minimum distance filter to help mitigate issues of 

spatial autocorrelation (Boria et al., 2014). This brought the sample of 648 presence 

records down to a sample of 198. No presence records were withheld from the 

training data, since ground surveys would inform model accuracy.  

 Environmental layers in this model included 24 variables: 19 BioClim 

variables (Hijman et al., 2005), elevation (USGS, 2006), heat load (derived from 

elevation), soil (NRCS, 2016), geology (USGS 2005a; USGS 2005b), and land cover 

(USGS, 2004). The extent of the model was defined as the furthest 8-digit HUC 

watershed in which a presence record occurred. Because soil, geology, and land cover 

data was only available for the United States, the extent of this model was limited to 

the southwestern United States, and the range of A. palmeri in Mexico was not 

estimated, though artificially restricting the range of A. palmeri to the United States 

may impact model performance and ought to be investigated in the future. All layers 

were resampled to a resolution of 1 hectare so that the spatial resolution of the model 

would correspond with a sampling plot to be later used in the field. 
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 Following model selection methods (Warren et al., 2014), I used all 

environmental variables to establish a preliminary set of 72 models in which each had 

a β value ranging from 0 to 15, adjusted in increments of 0.2. I selected the optimum 

value of β according to AICc in ENMTools (Warren et al., 2010; Warren and Seifert, 

2011; Warren et al., 2014). I then discarded all environmental variables with less than 

3 percent contribution to the optimum model. This contribution threshold was 

reduced from the 5 percent threshold utilized by Warren et al. (2014) because certain 

variables considered important to plant germination, establishment, and survival had a 

lower contribution when used with the whole suite of variables with which they may 

be highly correlated and 3 percent represented an integer value near the midpoint of 0 

and 5 percent. Additionally, excessively pruning of model variables may overestimate 

niche breadth (Warren et al., 2014), and the goal of this study is to realistically model 

the distribution of A. palmeri to inform management decisions while also effectively 

and practically informing field sampling methodology.  

After optimizing β for the final variable set, the most important variable 

according to that model was saved, and each variable following in importance was 

saved or discarded according to a correlation threshold. I used a correlation threshold 

of 70 percent for each variable in this study, as opposed to an 80 percent threshold 

used by Warren et al. (2014). Again, this was due to potential niche breadth 

overestimation with excessive model pruning. I then established a new suite of 

models using the final variable set to optimize β. The model with the optimum β 

value for the final set of variables then became the final model. All models generated 
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following these methods utilized MaxEnt’s raw output format, rather than the more 

commonly used logistic output, due to issues of model comparison and assumptions 

regarding species’ prevalence when comparing scaled models (Merow et al., 2013). 

However, after selecting the top model, I used the same β value and final variable set 

from the top model to generate a model in the logistic output format in order to easily 

stratify ground validation field sites across a range of probabilities of occurrence. 

Since the highest predicted probability of occurrence in the top model in a given cell 

was 94.35 percent, the model was reclassified into 5 classes using equal intervals in 

ArcGIS 10.4.1, as opposed to fixed intervals between 0 and 100 percent. These 

classes were used to stratify accuracy assessment sites to ensure adequate 

representation of the whole range of probabilities of occurrence throughout the study 

area and are defined in Table 1.1.  

 

 Table 1.1. Stratification Class Definitions 

 

Class Probability of Occurrence 

1 0 - 19.38 

2 19.38 - 38.12 

3 38.12 - 56.87 

4 56.87 - 75.61 

5 75.61 – 94.35 

                                

  

 Using ArcGIS 10.4, I extracted the reclassified raster by road buffers of 1 km, 

0.5 km, and by an area of interest comprised of southeastern Arizona and 

southwestern New Mexico, and intersected it with a layer of federal land derived 
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from the Protected Areas Database (USGS, 2016). I then converted this extracted area 

to point, with each point corresponding with the center of a 1-hectare pixel. I then 

used the sampling design tool (Buja and Menza, 2013) in ArcGIS 10.4.1 to select a 

random sample of points stratified by suitability class, with a minimum distance of 5 

km between points. Two hundred and fifty points within 1 km from the road were 

selected, and 250 points within .5 km from the road were selected, totaling 500 

survey points and 100 points in each class. Road buffers allowed field survey sites to 

be accessed quickly while also representing various distances from road features so as 

to not over-represent disturbed habitats.   

Although land status was accounted for when selecting survey points, 

previous surveys in the summer of 2015 informed me that access issues would still be 

encountered. Therefore, I set a goal of reaching 250 of these points during the 

summer of 2016. Because each point corresponded with the center of a pixel, each 

pixel corresponded with a probability of occurrence according to the model, and the 

project goal was to determine if the model could predict A. palmeri presence or 

absence, each point became the center of a survey plot, with the plot size 

corresponding with the size of the pixel. Points were located on the landscape using a 

Garmin Rino 610. I conducted all surveys on land managed by the Bureau of Land 

Management, U.S. Forest Service Coronado District, or U.S. Fish and Wildlife 

Service(Special Use Permit # 015-2016).  

Within each survey plot, I established the base of the plot by walking 50 m 

from the center point, due north or south if the plot was flat, or adjusted based on the 
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contour if the plot was on a hillside. Then, I ran a 100 m transect tape along the base 

of the plot, and walked parallel 100 m x 5 m belt transects at the 80 m, 60 m, 40 m, 

and 20 m marks on the base. Figure 1.6 shows a conceptualized diagram of these 

methods in a 100 m by 100 m plot. Figures 1.7a and 1.7b show an example of these 

methods in various habitat types, with the focal species visible in the right foreground 

of Figure 1.7a, and in the horizon of Figure 1.7b.  

                           

Figure 1.6 Survey methods in 1 hectare plot (gray square). Red dot is plot 

center, and black dashed arrow is path walked to establish plot base, represented by 

red dashed arrows at bottom of square. Solid black arrows represent belt transects 

walked, with parallel red dashed arrows representing belt transect width.  
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 These survey methods resulted in surveying 20 percent of each plot and pixel. 

Within each belt transect, I counted the number of A. palmeri or determined the 

absence of the species. A set of rules was established to preclude running transects in 

areas where it was evident that no A. palmeri was present. If an area was flat, had 

over 80 percent bare ground, no visual obstructions, and no A. palmeri visible on the 

surrounding landscape from the plot center, I determined that A. palmeri was absent 

from the plot and did not conduct transects. This was often the case in sparse lowland 

habitats dominated by creosote bush (Larrea tridentata) or in dry playa lakebeds. 

Figure 1.8 shows an example of a site that meets these criteria. In other instances, it 

was clear that A. palmeri was present in a plot, yet natural barriers such as cliffs, or 

artificial barriers such as mine shafts, prevented the establishment of transects. In 

these instances, A. palmeri was determined to be present but a count was not 

obtained.  

     
 Figure 1.7a. (Left) Belt transects in Quercus/Juniperus/Arctostaphylos scrub 

 Figure 1.7b. (Right) Belt transects in Larrea tridentata desert scrub  
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 Figure 1.8 Barren site that meets criteria to determine absence of A. palmeri 

without running belt transects 

 

 The ground validation dataset obtained using these methods allowed me to 

assess model accuracy based on multiple presence threshold methods easily applied 

via the graphical user interface MaxEnt. Seven threshold methods were considered, 

which can be seen in the Table 1.2. Each threshold was applied to the logistic output 

of the final A. palmeri model using MaxEnt, except for the Fixed50 method, which 

was applied using ArcGIS.  

 Thresholds were used to determine predicted presence or absence according to 

the model, and the ground validation dataset was used to assess threshold accuracy 

and select the best method. When compared to the ground validation dataset, these 

predictions allowed for the determination of the overall accuracy, sensitivity, 

specificity, kappa statistic, and true skill statistic (Allouche et al., 2006). Each of 

these threshold methods was applied to determine the best threshold method for A. 
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palmeri based on the true skill statistic, which represents the true positive rate minus 

the false negative rate (Freeman and Moisen, 2008). However, commission error (low 

specificity) may be acceptable in a distribution model with goals of informing 

potential restoration sites. While ground validation may indicate a species is not 

present in a given area in which it was predicted to occur, this may be due to external 

issues such as habitat disturbance or even illegal harvesting, rather than species 

habitat preferences. These areas should not necessarily be dismissed as unsuitable 

habitat when assessing species distribution model accuracy and may be effective 

restoration areas if they are since free of disturbing factors.  

 

    Table 1.2. Threshold Methods, Abbreviations, and Values  

 

Presence Threshold Method Abbreviation Threshold 

Value 

Balance Training Omission, Predicted Area, 

and Threshold Value 

BOAT 0.098 

Equate Entropy of Thresholded and Original 

Distribution 

EETOD 0.159 

Equal Training Sensitivity and Specificity ETSS 0.312 

Fixed Threshold Value of 0.50 Fixed50 0.500 

Maximum Training Sensitivity plus 

Specificity 

MaxSSS 0.191 

Minimum Training Presence MTP 0.032 

10 Percentile Training Presence 10Per 0.210 

 

 In the following chapter, I layout this project in manuscript format, focusing 

on the distribution and binary models generated for A. palmeri and the results of 

ground validation. The paper will be submitted to The Journal of Arid Environments. 

I hope this project provides important information to land managers by setting the 
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stage for site prioritization for habitat improvement projects, leading to effective 

habitat management strategies for both A. palmeri and nectarivorous bats.  
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CHAPTER 2. 

 

Modeling the Distribution of Palmer’s Agave (Agave palmeri) throughout the 

Sympatric Summer Ranges of Nectarivorous Bats  

(Phyllostomidae: Glossophaginae) 

 using Presence-only Species Distribution Modeling 

 

 

To Be Submitted To:  

The Journal of Arid Environments 

 

Rachel A. Burke, Christopher Brown, Kathryn E. Stoner, Carol Campbell 
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ABSTRACT 

Nectarivorous bats in the southwestern United States, two of which are federally 

endangered, are reliant on nectar from plants of the genus Agave to meet energy 

needs during the summer and early fall, prior to seasonal migration. Restoration and 

protection of Agave populations have been recommended in recovery plans for 

endangered nectarivorous bats, yet few studies have investigated specific habitat 

requirements for Agave spp. in the southwestern United States. Though areas with 

ample agave resources indicate high habitat quality for nectarivorous bats, no studies 

have explicitly modeled the distribution of Agave spp. and strategically ground 

validated predictions. In this study, we utilize maximum entropy modeling (MaxEnt) 

to predict the distribution of an important summer resource, Agave palmeri, in 

sympatric summer ranges for nectarivorous bats in the southwestern United States, 

following a standardized model selection approach. We then ground validated the 

model to test its accuracy and to evaluate presence threshold methods. High 

sensitivity and low specificity of each threshold method indicate the model may be 

better at indicating potential habitat rather than actual species presence for A. palmeri, 

yet model accuracy appeared to be higher in certain regions than in others. Agave 

palmeri was present at every site surveyed in the Chiricahua Mountains, indicating 

that this region can provide high quality habitat for nectarivorous bats throughout the 

flowering period of A. palmeri. Regions where A. palmeri was predicted to be present 

yet the species did not occur may highlight areas where restoration of A. palmeri is 

warranted. 
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1. Introduction 

 Three Neotropical species of nectar-feeding bats (Phyllostomidae: 

Glossophaginae) reach their northernmost extent in the southwestern United States. 

These long-distance migrants, lesser long-nosed bats (Leptonycteris yerbabuenae), 

Mexican long-nosed bats (Leptonycteris nivalis), and Mexican long-tongued bats 

(Choeronycteris mexicana), play important ecological roles by pollinating their food 

resources, dispersing seed of columnar cacti, and reducing genetic isolation in their 

food resources (Howell and Roth, 1981; Horner et al., 1998; Godinez-Alvarez and 

Valiene-Banuet, 2000; Rocha et al., 2006; Fleming et al., 2009; Rojas-Martínez et al., 

2012). While the southernmost populations of these species may not undergo long-

distance latitudinal migrations because of year-round food availability (Rojas-

Martínez et al., 1999; Stoner et. al., 2003; Rojas-Martínez et al., 2012; Cajas-Castillo 

et al., 2015;), their northern counterparts migrate along a nectar corridor of columnar 

cacti and Agave species throughout the Chihuahuan and Sonoran Deserts (Wilkinson 

and Fleming, 1996; Fleming et al., 1993). Two species of nectarivorous bats in the 

United States are federally endangered (Leptonycteris nivalis, L. yerbabuenae); 

restoration and protection of Agave populations have been recommended in recovery 

plans for both (USFWS, 1994; USFWS, 1995). 

 In the only regions in the United States where all three species of 

nectarivorous bats are sympatric (Arita and Humphrey, 1988; Hoyt et al., 1994), 

nectar from Agave spp. becomes the dominant food source. Palmer’s agave (Agave 

palmeri; Engelmann 1875), a monocarpic, semelparous, paniculate agave of the 
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subgenus Agave and Ditepalae Group (Gentry, 1982), provides an important resource 

for nectarivorous bats in this region (Slauson, 1999; Ober and Steidl, 2004; Scott, 

2004; England, 2012). Despite the need to better understand habitat requirements of 

Agave spp. in order to better understand the potential distribution of nectarivorous 

bats, few studies have investigated specific habitat requirements for Agave spp. in the 

southwestern United States.  

The overall goal of this study is to obtain information that will help inform 

management and restoration of A. palmeri populations throughout the southwestern 

United States and consequently assist in the conservation of nectarivorous bats in this 

region.  The specific objectives are to: 

 1) Generate a species distribution model (SDM) of A. palmeri to determine 

the probability of presence throughout the southwestern United States.  

2) Utilize this SDM to inform a ground-validation study to assess model 

accuracy. 

3) Select the optimal presence threshold method based on the ground 

validation dataset to delineate the range of A. palmeri to inform restoration plans and 

to recognize potential high quality resource areas for nectarivorous bats.  

2. Methods 

2.1 Methods Background 

A presence-only approach was followed to meet the modeling goals of this 

project. Upon reviewing presence-only methods, maximum entropy modeling 
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(MaxEnt: Phillips et al., 2006) was selected for several reasons. Agave palmeri 

exhibits a metapopulation structure in which many patches of plants occur across a 

wide range (Gentry, 1982). These patches occur in rugged terrain, with accessibility 

limited by both natural features and land ownership status. Purely random surveys for 

this species have resulted in few detections (S. Deeley, unpublished data), warranting 

the use of a predictive model with which to stratify field studies.  

MaxEnt is a viable choice to generate this predictive model. MaxEnt shows 

better discrimination between suitable and unsuitable areas for a species compared to 

other commonly used presence-only methods (Phillips et al., 2006), may be more 

effective at estimating species’ realized distributions (Rebelo and Jones, 2010), and 

generates robust models with fairly small sample sizes (Van Proosdij et al., 2015). 

Furthermore, a multitude of presence records for A. palmeri is readily available from 

multiple data sources. Each source contains various and unknown data collection 

biases, making traditional linear modeling inappropriate (Elith et al., 2011). MaxEnt 

helps reduce the biases associated with presence-only species distribution modeling 

by utilizing pseudo-absence data that is subject to the same biases as the input data 

and is thus able to utilize various sources of presence records that were not 

necessarily collected systematically (Phillips et al., 2006; Phillips et al., 2009; Elith et 

al., 2011).  

To select parsimonious models that will remain relevant in novel 

environments and shifting climatic scenarios, software has been developed to 

integrate model selection into MaxEnt (Warren, 2010; Warren and Seifert, 2011; 
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Warren et al., 2014). The program ENMTools (Warren et al., 2008; Warren et al., 

2010) works in conjunction with MaxEnt by allowing the user to compare multiple 

models in which the regularization parameter in MaxEnt is adjusted and input 

variables are removed or retained according to a correlation threshold (Warren et al., 

2014). These multiple models are then compared; the optimal model can be selected 

based on an information criterion metric that utilizes the principle of parsimony to 

penalize overly complex models, including Akaike’s Information Criterion (AIC), 

Akaike’s Information Criterion Adjusted for Small Samples (AICc), and Bayesian 

Information Criterion (BIC) (Burnham and Anderson, 2002; Warren et al, 2008; 

Warren et al., 2010). Models selected according to a more commonly used metric, the 

area under the receiver operating characteristic curve (AUC), are often over-

parameterized (Warren and Seifert, 2011; Searcy and Shaffer, 2014). 

 Models produced in MaxEnt generate an output of a continuous probability 

surface in which the relative occurrence rate (ROR) in each grid cell reflects a 

species’ likelihood of presence relative to other cells; this value can be left in raw 

format or logistically transformed (Merow et al., 2013; Merow et al., 2016). It is 

useful to convert these continuous values into a binary format to predict species 

presence or absence when estimating species niche breadth, niche overlap, and niche 

contraction or expansion under climate change scenarios (Nenzén and Araújo, 2011), 

and when using threshold-dependent accuracy assessment metric (Freeman and 

Moisen, 2008). Though converting a continuous probability surface into a binary  
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format relies on determining threshold values which are often arbitrary (Liu et al., 

2005; Warren et al., 2008; Nenzén and Araújo, 2011), accuracy assessment of 

distribution models is reliant on this presence threshold to determine sensitivity and 

specificity of the model.  

 Recent studies suggest that maximizing the sum of the sensitivity and 

specificity (MaxSSS) is the best method in threshold selection, while the most 

commonly used method, a fixed value of 0.5, has been shown to perform the worst 

(Liu et al., 2005; Liu et al., 2016). Threshold selection can also follow an accuracy 

assessment approach in which a ground validation dataset is used to determine the 

best threshold method (Nenzén and Araújo, 2011). Due to disagreements in the 

literature regarding the best threshold methods, we follow an accuracy assessment 

approach in this study. The best threshold method will be selected based on that 

which performs the best according to a ground validation dataset, which we obtain via 

field surveys for A. palmeri.   

2.2 Species Distribution Modeling for A. palmeri 

 Presence records in this model were obtained from multiple sources, including 

the Global Biodiversity Information Facility (gbif.org), SEINet, from the Bureau of 

Land Management, Las Cruces District Office (P. Alexander, personal 

communication), and from a previous study in southwestern New Mexico (S. Deeley, 

personal communication). Using ENMTools (Warren et al., 2010), all duplicate 

records were trimmed. Since multiple sources of presence records were utilized, and 

each had a different or unknown sampling methodology, we used the SDM Toolbox 
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in ArcGIS 10.4.1 to rarefy occurrence records with a 1 km minimum distance filter to 

help mitigate issues of spatial autocorrelation (Boria et al., 2014). This brought the 

sample of 648 presence records down to a sample of 198. No presence records were 

withheld from the training data for testing. 

 Environmental layers in this model included 24 variables: 19 BioClim 

variables (see Table 2.1 for definitions; Hijmans et al., 2005), elevation (USGS, 

2004), heat load (derived from elevation), soil (NRCS, 2016), geology (USGS 2005a; 

USGS 2005b), and land cover (USGS, 2004). We defined the extent of the model 

based on the furthest 8-digit watershed unit in which a presence record occurred. 

Because soil, geology, and land cover data were only available for the United States, 

the extent of this model was limited to the southwestern United States, and the range 

of A. palmeri in Mexico was not estimated, though the influence of this artificial 

range boundary ought to be investigated in the future. All layers were resampled to a 

resolution of 1 hectare so that the spatial resolution of the model would correspond 

with a sampling plot used in the field. 

 Table 2.1  

 BioClim Variable Definitions (Hijmans et al., 2005) 

 

BioVar  Definition  

Bio 1     Annual Mean Temperature 

Bio 2     Mean Diurnal Range (Mean of monthly (max temp-min temp) 

Bio 3     Isothermality (BIO2/BIO7) (* 100) 

Bio 4     Temperature Seasonality (standard deviation *100) 

Bio 5     Max Temperature of Warmest Month 

Bio 6     Min Temperature of Coldest Month 

Bio 7     Temperature Annual Range (BIO5-BIO6) 

Bio 8     Mean Temperature of Wettest Quarter 
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Bio 9     Mean Temperature of Driest Quarter 

Bio 10   Mean Temperature of Warmest Quarter 

Bio 11   Mean Temperature of Coldest Quarter 

Bio 12   Annual Precipitation 

Bio 13   Precipitation of Wettest Month 

Bio 14   Precipitation of Driest Month 

Bio 15   Precipitation Seasonality (Coefficient of Variation) 

Bio 16   Precipitation of Wettest Quarter 

Bio 17   Precipitation of Driest Quarter 

Bio 18   Precipitation of Warmest Quarter 

Bio 19   Precipitation of Coldest Quarter 

 

 

 Following model selection methods outlined by Warren et al. (2014), we used 

all environmental variables to establish a preliminary set of 72 models in which each 

had a β value ranging from 0 to 15, adjusted in increments of 0.2. We selected the 

optimum value of β according to AICc (Akaike’s Information Criterion adjusted for 

small sample size) in ENMTools (Warren et al., 2010; Warren and Seifert, 2011; 

Warren et al., 2014). All environmental variables with less than 3 percent 

contribution to the optimum model were discarded. This contribution threshold was 

reduced from the 5 percent threshold utilized by Warren et al. (2014) because certain 

variables considered important to plant germination, establishment, and survival had a 

lower contribution when used with the whole suite of variables with which they may 

be highly correlated, and 3 represents an integer value near the midpoint of 0 and 5 

percent. Additionally, excessive pruning of model variables may overestimate niche 

breadth (Warren et al., 2014).  
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 After optimizing β for the final variable set, we saved the most important 

variable according to that model, and saved or discarded each variable following in 

importance according to a correlation threshold. A correlation threshold of 70 percent 

was used for each variable in this study, as opposed to an 80 percent threshold used 

by Warren et al. (2014). Again, this was due to potential niche breadth overestimation 

with excessive model pruning. We then established a new suite of models to optimize 

β for the final set of variables. The model with the optimum β value for the final set 

of variables according to AICc then became the final model.  

2.3 Presence/Absence Thresholds 

Seven threshold methods were applied to the final A. palmeri model to 

generate a binary map indicating predicted presence or absence of A. palmeri (Table 

2.2).  Each of these threshold methods can be easily applied to a continuous 

distribution model via the graphical user interface in MaxEnt, except for the Fixed50 

method, which is easily applied using the reclassify tool in ArcGIS.  In order to select 

the best threshold method, a ground validation dataset obtained from field surveys 

was utilized (see section 2.4). 

  

 Table 2.2  

 Presence thresholds for A. palmeri 

 

Presence Threshold Method Abbreviation Threshold Value 

Balance Training Omission, Predicted Area, 

and Threshold Value 

BOAT 0.098 

Equate Entropy of Thresholded and Original 

Distribution 

EETOD 0.159 

Equal Training Sensitivity and Specificity ETSS 0.312 

Fixed Threshold Value of 0.50 Fixed50 0.500 
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Maximum Training Sensitivity plus 

Specificity 

MaxSSS 0.191 

Minimum Training Presence MTP 0.032 

10 Percentile Training Presence 10Per 0.210 

 

2.4 Field Site Selection and Surveys  

 When establishing initial models, we used MaxEnt’s raw output format, rather 

than the more commonly used logistic output, due to issues with model comparison 

and assumptions regarding species’ prevalence when using scaled models (Merow et 

al., 2013). However, after selecting the top model, we applied the same β value and 

final variable set from the top model to generate a model in the logistic output format 

in order to stratify ground validation field sites across a range of probabilities of 

occurrence. We reclassified this model for A. palmeri into 5 classes using equal 

intervals in ArcGIS 10.4.1, corresponding with ranges in probability of occurrence.  

Using ArcGIS 10.4.1, we extracted the reclassified raster by road buffers of 1 

km, 0.5 km, by an area of interest comprised of southern Arizona and southwestern 

New Mexico, and intersected it with a layer of federal land derived from the 

Protected Areas Data Portal (USGS, 2016). We converted the extracted raster to 

point, with each point corresponding with the center of a 1-hectare pixel, and used the 

sampling design tool (Buja and Menza, 2013) to select a random subset of points 

stratified by suitability class, with a minimum distance of 5 km between points. Two 

hundred and fifty points within 1 km from the road were selected, and 250 points 

within 0.5 km from the road were selected, totaling 500 survey points and 100 points 

in each class. Road buffers allowed field surveys to be accessed quickly while also 
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representing various distances from road features so as to not over-represent disturbed 

habitats. Although land status was accounted for when selecting survey points, 

previous surveys in the summer of 2015 indicated that access issues would still be 

encountered. Therefore, we set a goal of reaching 250 of these points, with 50 points 

in each of the 5 classes to ensure adequate coverage across the whole range of 

probabilities. 

 To conduct field surveys, each point became the center of a survey plot, with 

the plot size corresponding with the size of the pixel. We located points on the 

landscape using a Garmin Rino 610. We conducted all surveys on land managed by 

the Bureau of Land Management, U.S. Forest Service, or U.S. Fish and Wildlife 

Service (Special Use Permit # 015-2016). Within each survey plot, we established the 

base of the plot by walking 50 m from the center point, due north or south if the plot 

was flat, or adjusted based on the contour if the plot was on a hillside. We placed a 

100 m transect tape along the base of the plot and walked 4 parallel 100 m x 5 m belt 

transects from the base (Figure 2.1).  

 Within each transect, we counted the number of A. palmeri or determined the 

absence of the species. We established a set of rules to preclude running transects in 

areas where it was evident that no A. palmeri was present. If an area was flat, had 

over 80 percent bare ground, no visual obstructions, and no A. palmeri visible on the 

surrounding landscape from the plot center, we considered A. palmeri to be absent 

from the plot and transects were not conducted.  In other instances, it was clear that A. 

palmeri was present in a plot, yet natural or artificial barriers prevented the 
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establishment of transects. In these instances, we determined A. palmeri to be present, 

but we did not obtain a count.  

 

 

Figure 2.1 Survey methods in 1 hectare plot (gray square). Red dot is plot 

center, and black dashed arrow is path walked to establish plot base, represented by 

red dashed arrows at bottom of square. Solid black arrows represent belt transects 

walked, with parallel red dashed arrows representing belt transect width.  

  

Using ArcGIS 10.4.1, we compared the ground validation dataset obtained 

using these methods to areas of predicted presence and predicted absence according 

to each threshold method. Total numbers of accurately predicted presences, 

accurately predicted absences, and total numbers of false presences and false 
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absences were determined for each threshold method. These values allowed for the 

determination of the overall accuracy, sensitivity, specificity, kappa statistic, and true 

skill statistic (TSS), as defined in Allouche et al. (2006). The best presence/absence 

threshold method was selected according to the TSS.  

3. Results 

3.1 Agave palmeri species distribution model 

 In the model selection process, 72 preliminary distribution models of A. 

palmeri were generated, in which each had a β value between 0 and 15, adjusted in 

increments of 0.2. Using ENMTools, we optimized β for the preliminary model at β = 

6.0 according to AICc. Variables with over 3 percent contribution to this preliminary 

model included Bio 18, Bio 9, Bio 11, Bio 13, Bio 15, Bio 1, Bio 6, Bio 7, Bio 8, soil, 

and Bio 5. Variables were saved or discarded in order of importance according to the 

correlation threshold, leaving Bio 18, Bio 7, Bio 15, Bio 9, Bio 11, Soil, Bio 5, Bio 1, 

and Bio 8 in the final variable set. Using the final variable set, we retuned β to an 

optimal value of β = 4.2. Variable contributions for this model can be seen in Table 

3.1. The final model is shown in Figure 3.1, presented in logistic format for ease of 

interpretability, along with the 198 spatially rarefied presence records used to train 

the model. 

 Table 3.1  

 Variable importance for final A. palmeri model (β = 4.2)  

 

Variable Percent Contribution Permutation Importance 

Bio 18 23.4 47.7 

Bio 7 21.4 3.1 

Bio 15 19.3 3.4 
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Bio 9 18.7 25.1 

Bio 11 9.6 3.4 

Soil 6.3 4.6 

Bio 5 1.2 6.8 

Bio 1 0.2 6 

Bio 8 0 0 

 

 

Figure 3.1 Top A. palmeri distribution model and training records, logistic output.  

 

3.2 Field Surveys and Threshold Testing 

 Between June and October of 2016, we surveyed 115 sites. This fell short of 

the goal of 250 sites, as we encountered many access issues throughout the season. 

We detected A. palmeri at 33.04 percent of sites (n = 38), and determined A. palmeri 

to be absent from 66.96 percent of sites (n = 77). Surveys fell primarily within the 
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Animas, Big Burro, Chiricahua, Huachuca, Mule, Patagonia, Peloncillo, Pinaleño, 

and Santa Catalina Mountain Ranges, as well as in intermittent valleys.  

3.3 Threshold Selection and Predicted Range 

 We established seven binary maps indicative of predicted presence or absence 

by applying various threshold methods to the continuous A. palmeri distribution 

model, which were outlined in Table 2.2. These maps can each be seen in Figure 3.2. 

We selected the best model according to TSS, which we calculated using the ground 

validation dataset. The selected threshold can be seen in more detail in Figure 3.3, 

along with the ground validation dataset survey locations. 

 Each of the presence threshold methods had a high sensitivity and was 

effectively able to predict species presence. However, high sensitivity came at the 

expense of low specificity. Inaccurately predicted presences were common amongst 

all methods (n = 62.86 ± 8.68). While the fixed threshold method had the highest 

overall accuracy, the threshold method which maximized TSS, ETSS, was ultimately 

chosen. The equal training sensitivity and specificity method also maximized kappa, 

had the second highest specificity, and second highest overall accuracy (Table 3.2). 

The worst performing metric was the minimum training presence, which predicted the 

presence of A. palmeri throughout almost the entire study area (82.2 percent). The 

selected threshold method, ETSS, predicted A. palmeri presence throughout 21.2 

percent of the study area. Model accuracy appeared to fluctuate throughout the study 

area. Agave palmeri was present in every site surveyed in the Chiricahua Mountains, 
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with highly variable total counts. Fluctuations in A. palmeri density (28.88 ±100.77 

ha-1) across the study area will be assessed in a future study.   

 

Figure 3.2 Presence thresholds, A. palmeri. A = BOAT, B= EETOD, C = 

ETSS, D = Fixed50, E = MaxSSS, F = MTP, G = 10Per (see Table 2.2 for 

abbreviation definitions).  
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Table 3.2  

 Accuracy assessment metrics based on ground validation dataset and 

fractional predicted area for each (shown in order of decreasing TSS) 

 

Threshold 

Method 

Overall 

Accuracy 

Sensitivity Specificity Kappa  TSS Predicted 

Area 

ETSS 0.5043 0.8947 0.3117 0.1556 0.2064 21.2 % 

10Per 0.4783 0.9474 0.2468 0.1414 0.1941 30.2 % 

Fixed50 0.5130 0.8421 0.3506 0.1490 0.1928 10.0 % 

MaxSSS 0.4261 1.0000 0.1429 0.0992 0.1429 32.2 % 

EETOD 0.4174 1.0000 0.1299 0.0898 0.1299 38.4 % 

BOAT 0.3826 1.0000 0.0779 0.0529 0.0779 52.2 % 

MTP 0.3478 1.0000 0.0260 0.0173 0.0260 82.8 % 

 

 

Figure 3.3 Predicted presence and absence of A. palmeri based on the ETSS 

threshold method vs. actual presence and absence based on the ground validation 

dataset. NAD 1983, Zone 12.  
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4. Discussion 

 We verified the true presence of A. palmeri throughout the study region, and 

detected the highest numbers of individual plants in the Chiricahua, Dos Cabezas, and 

southern Peloncillo Mountains. While the Chiricahua Mountains have been 

extensively studied, little research has taken place in the southern Peloncillo 

Mountains, largely due to access issues. We also detected A. palmeri in the Pyramid 

Mountains of New Mexico, both in survey plots and incidentally throughout the 

region. Given the prevalence of abandoned mines in this region, further surveys for 

nectarivorous bats in the region are warranted. Collaboration with private landowners 

in the region is also warranted, as many large patches of A. palmeri were incidentally 

observed to fall on private lands, and abandoned mines within foraging distance from 

these patches also appeared to fall within private lands. This would help us not only 

to better understand the distribution of A. palmeri, but also would help identify 

potential habitat for species that rely on Agave nectar to meet their energy needs, 

particularly endangered Leptonycteris.  

 Overall, the detection of A. palmeri at 33.04 percent of survey sites was a 

significant improvement from detections in a previous preliminary unstratified study 

in which we detected A. palmeri at 2.16 percent of sites (S. Deeley, personal 

communication). This highlights the importance of using predictive models to 

allocate survey efforts when studying patchy species with specific habitat preferences 

across a large range, an important issue when dealing with the budgetary, staffing, 

and timeline restrictions with which many field researchers are faced. Nevertheless, 
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the model that was used to stratify field sites predicted the presence of A. palmeri at 

many sites in which the species was not detected.  The low specificity incurred with 

each presence threshold method indicates a limited ability for the SDM to 

discriminate between suitable and un-suitable sites. Within the model selection 

process, reducing the number of input variables may have led to an overestimation of 

niche breadth, resulting in high sensitivity and low specificity. Additionally, the 

higher accuracy in the eastern range of A. palmeri indicates that more recent and 

precise presence records may help improve model performance, as it is in this region 

that more recent presence records were utilized.  

While evaluation metrics are subject to a trade-off between errors of omission 

and commission, the management objective of the study ought to be considered when 

choosing a threshold method. Commission errors, reflected in low specificity, may be 

more acceptable than omission errors when generating distribution models to 

establish conservation guidelines (Boykin et al., 2007). Furthermore, the absence of 

A. palmeri at a given site does not necessarily mean the site is unsuitable habitat for 

A. palmeri. Rather, the limited dispersal capabilities of this species may have 

prevented colonization of these sites, or colonization may be limited by external 

circumstances such as habitat disturbance, woody encroachment, or invasive grass 

encroachment (personal observation), or even by shifting climatic conditions that 

were not reflected in the input variables used to generate the SDM; current layers 

derived from WorldClim only represent climatic norms between 1960 and 1990 

(Hijmans et al., 2005). This study indicates that SDMs can serve as an important 
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biogeographical tool to predict plant species ranges, while informing more detailed 

field studies to obtain finer scale habitat variables that influence species presence or 

absence within these ranges.  

 The most important variable in the SDM, precipitation during the warmest 

quarter, likely influences A. palmeri survival at multiple life stages. The warmest 

quarter of the year is likely when reproductive individuals flower, fruit, and disperse 

seed, with germination dependent on moist soil conditions promoted by summer 

monsoons. Additionally, young Agave spp. are more prone to desiccation due to 

limited water storage capacity, and are thus highly sensitive to moisture conditions 

(Nobel, 1988). While older plants may have an enhanced buffer to drought due to 

water storage in succulent leaves, new patches will not be colonized if conditions are 

not suitable for germination and juvenile recruitment. This should be of concern in 

the southwestern United States where conditions are expected to become hotter and 

drier (Seager et al., 2007), especially since A. palmeri, unlike most other Agave spp., 

does not reproduce vegetatively (Gentry, 1982). The long life cycle of A. palmeri 

makes this species especially vulnerable to changing climatic regimes since this limits 

the rate at which a population of A. palmeri can adapt to changing conditions. While 

genetic outcrossing by bats that travel long distances between foraging grounds may 

increase the resilience of Agave spp. to climate change (Fleming, 2009), patches of 

Agave spp. must have a high enough density of inflorescences to warrant pollinator 

visitation in order for such outcrossing to occur (Essenberg, 2012). 



46 
 

 Based on the results of this study, we recommend several areas of further 

research. First, this model of A. palmeri distribution ought to be updated as more 

recent and higher resolution climatic variables become available, and more precise 

presence records of A. palmeri ought to be utilized. The standard methods employed 

in this study are easily repeatable and can be continually integrated with updated data. 

Also, GIS data for the Mexican states of Chihuahua and Sonora would allow the 

influence of an artificial boundary on the US–Mexico border to be assessed, while 

also helping to identify potential foraging grounds for nectarivorous bats in northern 

Mexico, an area that is largely understudied.  We also recommend following these 

same methods for Agave spp. with the abilities to reproduce from bulbils, such as A. 

lechuguilla, A. schottii, or A. parryi, to see if reproductive strategies influence SDM 

accuracy. This would help indicate if the reproductive strategy of A. palmeri does in 

fact restrict niche breadth from that which is predicted in SDMs. Lastly, potential 

range shifts under various climate scenarios ought to be modeled to inform assisted 

migration plans for A. palmeri, as it may exhibit limited dispersal capabilities and a 

limited ability to effectively adapt to changing climates based on its limited dispersal 

and long life span.  Future studies would be enhanced by collaboration between land 

managers, land owners, and researchers. Information generated from this study and 

future studies will be key in helping develop effective conservation plans for 

nectarivorous bats in the region. 
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CHAPTER 3. 

CONCLUSION 

 This study is part of a larger project assessing habitat suitability for 

nectarivorous bats throughout the southwestern United States. By generating this 

species distribution model for Agave palmeri, the groundwork for further study has 

been established. While this model informed the sampling methodology for accuracy 

assessment in this study, the same sampling methodology was also followed to obtain 

more detailed information on A. palmeri populations and individuals. As a dual 

master’s student in Applied Geography and Fish, Wildlife, and Conservation 

Ecology, I conducted a two-part project in which methods complimented one another. 

While this project in Applied Geography lays the groundwork for the study of A. 

palmeri, my Fish, Wildlife, and Conservation Ecology project builds upon this project 

in several ways. 

 In a follow up study, I investigate the relationship between the relative 

occurrence rate in the A. palmeri SDM and A. palmeri density on the ground, rather 

than presence or absence, to see if SDMs can help predict habitat quality for 

pollinators by representing resource density. I also investigate the influence of 

climatic conditions on the size class distribution of A. palmeri, using size class as a 

surrogate indicator of population trends. If low juvenile recruitment in A. palmeri 

patches is a major reason why potentially suitable regions are uninhabited by A. 

palmeri, exploring the climatic and land use variables behind this may help further 

inform decisions regarding A. palmeri management and restoration. 
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 While conducting field work, several anecdotal observations were made 

regarding A. palmeri distribution. Many of the densest patches of A. palmeri observed 

in the field seemed to be in areas which we could not survey because they fell on 

private lands. It is possible that private land owners may be managing their property 

differently than federal land management agencies, and this warrants further 

investigation as well as collaboration among land owners and land managers. Within 

the area of study, A. palmeri patches on private lands were observed to occur on open 

hills, between the more rugged terrain in which A. palmeri occur on federal lands. 

These intermittent habitats may be critical in maintaining dispersal corridors between 

xeric mountain ranges for A. palmeri, as well as in maintaining nectar corridors for 

bats.  

 Secondly, there appeared to be a negative association between adult A. 

palmeri and forest cover, and a positive association between juvenile A. palmeri and 

forest cover. This will be further investigated in the follow up study, as it may 

indicate stages of ecological succession at which A. palmeri colonizes new patches. 

While A. palmeri may require nurse plants to germinate and establish juveniles, as 

many desert succulent plants do, there may come a point when competition for 

sunlight may inhibit growth and populations may not thrive unless there is a 

disturbance to the forest canopy. This represents one of the many possible reasons 

that A. palmeri were expected to occur in many sites in which they did not. Agave 

palmeri may also have negative associations with particular plant species, and 
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positive associations with others, which will be assessed in a future study using an 

external dataset.  

 Thirdly, when looking at reproductive A. palmeri, herbivory rates appeared to 

be quite high. Native ungulates seemed to be the main culprit, as two hoof marks 

were often identified on the stalk below the point at which panicles were eaten. Water 

sources provided by wildlife managers may attract herbivores to patches of A. 

palmeri that neighbor these features, thus increasing herbivory risk.  

 As an overall conclusion, this study highlights several major findings 

regarding species distribution modeling for A. palmeri. Amongst the most notable is 

the extreme variation in predicted species ranges under various presence threshold 

methods. These differences are especially important to note when predicted ranges 

are used to inform management, or to estimate range shifts under climate change 

scenarios. It is unclear whether areas in which presence was predicted yet no A. 

palmeri occurred are actually unsuitable or if external circumstances prevented A. 

palmeri from occurring in those sites.  

 If sites where conditions are determined suitable for A. palmeri yet A. palmeri 

is not present at those sites, these may be targets for assisted migration to restore 

populations and enhance resource availability for nectarivorous bats. I recommend 

intersecting these regions with regions which are also within suitable habitat for 

nectarivorous bats to prioritize restoration sites for A. palmeri. Bat habitat models 

generated for my Fish, Wildlife, and Conservation Ecology project will help identify 

these sites. Given the potential susceptibility of A. palmeri to changing climatic 
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conditions, I recommend targeting individuals based on their genetic diversity when 

attempting to restore populations from a limited number of individual plants. This 

ought to be investigated in a follow up study, as higher heterozygosity in A. palmeri 

will help increase population resilience to climate change.    
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APPENDIX 

ENVIRONMENTAL LAYERS 

 

 All layers are shown in the format in which they were utilized in MaxEnt. 

These are unprojected ASCII layers in WGS 1984 datum used as environmental 

layers in the model selection process. 

 Figure A. Bio 1, Annual Mean Temperature. Shown in Degrees Celsius 

 times 10. (Hijmans et al., 2005) 
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 Figure B. Bio 2. Mean Diurnal Range. (Mean of monthly difference between 

 maximum temperature and minimum temperature). Shown in Degrees Celsius 

 times 10 (Hijmans et al., 2005).  
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 Figure C. Bio 3. Isothermality.  Bio2 / Bio 7 * 100. (Mean monthly 

 temperature / annual temperature range) * 100). (Hijmans et al., 2005). 
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 Figure D. Bio 4. Temperature Seasonality (Standard deviation * 100). 

 (Hijmans et al., 2005). 
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 Figure E. Bio 5. Maximum temperature of the warmest month. Shown in 

 Degrees Celsius times 10. (Hijmans et al., 2005). 
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 Figure F. Bio 6. Minimum temperature of the coldest month. Shown in 

 Degrees Celsius times 10. (Hijmans et al., 2005). 
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 Figure G. Bio 7. Temperature annual range (Bio 5 – Bio 6). Shown in 

 Degrees Celsius times 10. (Hijmans et al., 2005). 
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 Figure H. Bio 8. Mean temperature of the wettest quarter. Shown in 

 Degrees Celsius times 10. (Hijmans et al., 2005). There appears to be an 

 anomaly in the northwest corner of this layer, though it should not have 

 influenced the model because Bio 8 had 0 % contribution to the final model.  



i 
 

 

 Figure I. Bio 9. Mean temperature of the driest quarter. Shown in  Degrees 

 Celsius times 10. (Hijmans et al., 2005). 
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 Figure J. Bio 10. Mean temperature of the warmest quarter. Shown in 

 Degrees Celsius times 10. (Hijmans et al., 2005). 
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 Figure K. Bio 11. Mean temperature of the coldest quarter. Shown in 

 Degrees Celsius times 10. (Hijmans et al., 2005). 
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 Figure L. Bio 12. Annual precipitation (mm) (Hijmans et al., 2005).  
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 Figure M. Bio 13. Precipitation of the wettest month (mm). (Hijmans et al., 

 2005). 
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 Figure N. Bio 14. Precipitation of the driest month (mm). (Hijmans et al., 

 2005). 
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 Figure O. Bio 15. Precipitation seasonality (mm). (Coefficient of variation). 

 (Hijmans et al., 2005).  
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 Figure P. Bio 16. Precipitation of the wettest quarter (mm). (Hijmans et al., 

 2005). 
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 Figure Q. Bio 17. Precipitation of the driest quarter (mm). (Hijmans et al., 

 2005).  
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 Figure R. Bio 18. Precipitation of the warmest quarter (mm). (Hijmans et al., 

 2005). 
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 Figure S. Bio 19. Precipitation of the coldest quarter (mm). (Hijmans et al., 

 2005). 
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 Figure T. Elevation (m). Derived from SRTM (USGS, 2006). 
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 Figure U. Geology. See Table A for categories. (USGS 2005a, USGS 2005b) 
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 Table A. Geology Categories (USGS 2005a, USGS 2005b) 

Value Rock Type 

1 alkaline basalt 

2 alluvium 

3 andesite 

4 basalt 

5 carbonate 

6 clastic 

7 coarse-grained mixed clastic 

8 conglomerate 

9 dacite 

10 diabase 

11 eolian 

13 felsic metavolcanic rock 

14 felsic volcanic rock 

16 gneiss 

17 granite 

18 granodiorite 

19 gravel 

20 greenstone 

22 lake or marine deposit (non-glacial) 

23 landslide 

24 lava flow 

25 limestone 

27 medium-grained mixed clastic 

29 mudstone 

30 phyllite 

32 plutonic rock (phaneritic) 

33 pyroclastic 

35 quartz monzonite 

36 rhyolite 

37 sand 

38 sandstone 

39 schist 

40 sedimentary rock 

41 shale 

42 tuff 

44 volcanic rock (aphanitic) 

45 water 
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 Figure V. Heat Load (= (1-cos(ɵ-45)) / 2), ɵ = aspect.  
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 Figure W. Land cover. See Table B for categories. (USGS, 2004). 
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Table B. Land cover category descriptions. (USGS, 2004) 

Value Description 

5 Rocky Mountain Cliff and Canyon 

9 Colorado Plateau Mixed Bedrock Canyon and Tableland 

10 Inter-Mountain Basins Shale Badland 

12 Inter-Mountain Basins Volcanic Rock and Cinder Land 

14 Inter-Mountain Basins Playa 

15 North American Warm Desert Bedrock Cliff and Outcrop 

17 North American Warm Desert Active and Stabilized Dune 

18 North American Warm Desert Volcanic Rockland 

19 North American Warm Desert Wash 

20 North American Warm Desert Pavement 

21 North American Warm Desert Playa 

22 Rocky Mountain Aspen Forest and Woodland 

24 Rocky Mountain Subalpine-Montane Limber-Bristlecone Pine Woodland 

26 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland 

28 Rocky Mountain Subalpine Mesic Spruce-Fir Forest and Woodland 

30 Rocky Mountain Montane Dry-Mesic Mixed Conifer Forest and Woodland 

32 Rocky Mountain Montane Mesic Mixed Conifer Forest and Woodland 

33 Madrean Pine-Oak Forest and Woodland 

34 Rocky Mountain Ponderosa Pine Woodland 

35 Southern Rocky Mountain Pinyon-Juniper Woodland 

36 Colorado Plateau Pinyon-Juniper Woodland 

41 Rocky Mountain Gambel Oak-Mixed Montane Shrubland 

42 Rocky Mountain Lower Montane-Foothill Shrubland 

45 Madrean Encinal 

48 Inter-Mountain Basins Big Sagebrush Shrubland 

50 Colorado Plateau Mixed Low Sagebrush Shrubland 

51 Mogollon Chaparral 

52 Apacherian-Chihuahuan Mesquite Upland Scrub 

53 Colorado Plateau Blackbrush-Mormon-tea Shrubland 

55 Chihuahuan Succulent Desert Scrub 

56 Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub 

57 Sonoran Paloverde-Mixed Cacti Desert Scrub 

58 Inter-Mountain Basins Mixed Salt Desert Scrub 

59 Chihuahuan Stabilized Coppice Dune and Sand Flat Scrub 

60 Sonora-Mojave Creosotebush-White Bursage Desert Scrub 

61 Sonora-Mojave Mixed Salt Desert Scrub 
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64 Inter-Mountain Basins Juniper Savanna 

65 Apacherian-Chihuahuan Piedmont Semi-Desert Grassland and Steppe 

67 Inter-Mountain Basins Semi-Desert Shrub Steppe 

68 Chihuahuan Gypsophilous Grassland and Steppe 

71 Southern Rocky Mountain Montane-Subalpine Grassland 

76 Inter-Mountain Basins Semi-Desert Grassland 

79 Rocky Mountain Lower Montane Riparian Woodland and Shrubland 

80 

North American Warm Desert Lower Montane Riparian Woodland and 

Shrubland 

82 Inter-Mountain Basins Greasewood Flat 

83 North American Warm Desert Riparian Woodland and Shrubland 

84 North American Warm Desert Riparian Mesquite Bosque 

85 North American Arid West Emergent Marsh 

86 Rocky Mountain Alpine-Montane Wet Meadow 

91 Madrean Upper Montane Conifer-Oak Forest and Woodland 

92 Madrean Pinyon-Juniper Woodland 

93 Chihuahuan Sandy Plains Semi-Desert Grassland 

95 Madrean Juniper Savanna 

96 Chihuahuan Mixed Salt Desert Scrub 

105 Sonoran Mid-Elevation Desert Scrub 

108 Southern Colorado Plateau Sand Shrubland 

110 Open Water 

111 Developed, Open Space - Low Intensity 

112 Developed, Medium - High Intensity 

113 Barren Lands, Non-specific 

114 Agriculture 

116 Recently Burned 

117 Recently Mined or Quarried 

118 Invasive Southwest Riparian Woodland and Shrubland 

122 Invasive Annual and Biennial Forbland 
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 Figure X. Soil. SSURGO. See Table C for definitions.  (NRCS, 2016).  
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 Table C. Soil series definitions (NRCS, 2016).  

Value Soil Series Map Unit Key 

0 Denure-Dateland (s276) 658354 

1 Glenbar-Gadsden-Brios (s277) 658355 

2 Sasco-Marana-Denure (s278) 658356 

3 Yahana-Indio-Gadsden (s279) 658357 

4 Pahaka-Mohall-Laveen-Denure (s280) 658358 

5 Momoli-Denure-Carrizo (s281) 658359 

6 Mohall-Denure-Coolidge (s283) 658361 

7 Mohall-Contine (s284) 658362 

8 Yahana-Shontik-Casa Grande (s285) 658363 

9 Tremant-Pinamt-Ebon (s286) 658364 

10 Suncity-Cipriano-Carefree (s287) 658365 

11 Rillito-Gunsight-Denure-Chuckawalla (s288) 658366 

12 Hyder-Coolidge-Cipriano-Cherioni (s289) 658367 

13 Pinamt-Gunsight-Cavelt (s291) 658369 

14 Pinamt-Momoli-Cipriano (s292) 658370 

15 Rock outcrop-Quilotosa-Momoli (s293) 658371 

16 Rock outcrop-Quilotosa-Hyder-Gachado (s294) 658372 

17 Laveen-Kamato-Casa Grande (s296) 658374 

18 Toltec-La Palma-Casa Grande (s297) 658375 

19 Mohall-Dateland-Casa Grande (s298) 658376 

20 Pahaka-Estrella-Antho (s299) 658377 

21 Guest-Glendale-Gila (s302) 658380 

22 Riveroad-Comoro-Arizo (s303) 658381 

23 Sonoita-Hayhook-Continental (s307) 658385 

24 Sahuarita-Mohave-Cave (s308) 658386 

25 Stagecoach-Nahda-Delnorte-Agustin (s310) 658388 

26 Pinaleno-Eba (s311) 658389 

27 Pinaleno-Palos Verdes-Nickel (s313) 658391 

28 Rock outcrop-Lehmans-Gran (s316) 658394 

29 Rock outcrop-Lajitas-Delthorny-Anklam (s317) 658395 

30 Santo Tomas-Pima-Comoro (s320) 658398 

31 Hondale-Gothard-Bluepoint (s321) 658399 

32 Sontag-Bonita (s322) 658400 

33 Tubac-Forrest-Enzian-Diaspar (s323) 658401 
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34 White House-Hathaway-Bernardino (s325) 658403 

35 Tombstone-Stronghold-Jerag (s326) 658404 

36 White House-Hathaway-Caralampi-Bernardino (s328) 658406 

37 Romero-Rock outcrop-Lampshire (s329) 658407 

38 Rock outcrop-Mabray-Lemitar (s335) 658413 

39 

Tours saline-Sodic-Riverwash-Jocity saline-Sodic-Ives 

saline-Sodic-Burnswick (s337) 658415 

40 Marcou-Jocity saline-Sodic-Burnswick (s338) 658416 

41 Wepo-Polacca-Jocity-Jeddito (s339) 658417 

42 Sheppard sodic-Sheppard-Joraibi-Jocity (s340) 658418 

43 Purgatory-Epikom-Claysprings-Badland (s344) 658422 

44 Winona-Tusayan-Boysag (s355) 658433 

45 Rock outcrop-Needle-Epikom (s356) 658434 

46 Wupatki-Wukoki-Tuweep (s360) 658438 

47 Rock outcrop (s362) 658440 

48 Sheppard-Grieta (s363) 658441 

49 Ubank-Cerrillos-Barx (s366) 658444 

50 Rock outcrop-Mellenthin-Leanto-Kech-Bisoodi (s367) 658445 

51 Nuffel-Kech-Barx (s368) 658446 

52 Rock outcrop-Deama (s369) 658447 

53 Moano-Barkerville (s373) 658451 

54 Typic Haplustalfs (s376) 658454 

55 Thunderbird-Springerville-Rudd-Cabezon (s377) 658455 

56 Springerville-Cabezon (s379) 658457 

57 Poley-Pastura-Partri-Lynx-Abra (s381) 658459 

58 Lynx-Lonti-Balon (s382) 658460 

59 Telephone-Rock outcrop-Overgaard-Elledge (s385) 658463 

60 Spudrock-Elledge-Docdee (s386) 658464 

61 Gordo-Baldy (s387) 658465 

62 Sponseller-Ess (s388) 658466 

63 Thunderbird-Showlow (s389) 658467 

64 

Typic Haplustalfs-Rock outcrop-Aridic Haplustalfs 

(s390) 658468 

65 Typic Haplustalfs-Lithic Haplustalfs (s391) 658469 

66 Abreu (s395) 658473 

67 Typic Eutroboralfs (s396) 658474 

68 Typic Eutroboralfs (s397) 658475 

69 Pinamt-Momoli-Hickiwan-Gunsight-Denure (s399) 658477 
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70 Retriever-Calciorthids (s400) 658478 

71 Vertic Haplustalfs-Aridic Ustochrepts (s401) 658479 

72 Rock outcrop-Lama-Fragua (s402) 658480 

73 Winona-Spudrock-Rock outcrop (s403) 658481 

74 Winona-Spudrock-Rock outcrop (s404) 658482 

75 Quintana (s405) 658483 

76 Typic Paleboralfs-Eutric Glossoboralfs (s406) 658484 

77 

Typic Cryoboralfs-Rock outcrop-Eutric Glossoboralfs 

(s407) 658485 

78 Rock outcrop-Eutric Glossoboralfs (s408) 658486 

79 

Typic Paleboralfs-Typic Cryoboralfs-Rock outcrop 

(s411) 658489 

80 Vertic Haplustalfs-Typic Haplustalfs (s412) 658490 

81 Silkie-Espiritu (s416) 658494 

82 Wineg-Quintana-Amos (s417) 658495 

83 Typic Haplustalfs-Lithic Haplustalfs (s418) 658496 

84 Mollic Eutroboralfs (s419) 658497 

85 

Rock outcrop-Mollic Cryoboralfs-Eutric Glossoboralfs 

(s420) 658498 

86 Mirand-Derecho (s421) 658499 

87 Vibo-Casto (s423) 658501 

88 Typic Haplustalfs-Mollic Eutroboralfs (s424) 658502 

89 Mirand-Maes (s425) 658503 

90 Eutric Glossoboralfs (s426) 658504 

91 Heflin-Casto (s427) 658505 

92 Tombstone-Romero-Rock outcrop (s429) 658507 

93 Tubac-Pajarito-Hayhook-Glendale-Bucklebar (s430) 658508 

94 Tres Hermanos-Pinamt-Artesia (s431) 658509 

95 Eicks-Eba-Cloverdale (s432) 658510 

96 Limpia-Graham-Bonita-Atascosa (s433) 658511 

97 Mabray-Chiricahua-Atascosa (s434) 658512 

98 Rock outcrop-Mokiak-Faraway (s435) 658513 

99 Rock outcrop-Luzena-Fallsam (s436) 658514 

100 Tapco-Peloncillo-Artesia (s437) 658515 

101 Wampoo-Signal-Bonita (s438) 658516 

102 Selevin-Eloma-Alsco (s439) 658517 

103 Abreu (s446) 658524 

104 Altar (s447) 658525 

105 Altar (s448) 658526 
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106 Rock outcrop-Garr (s449) 658527 

107 Badland-Aridic Ustochrepts-Aridic Haplustolls (s453) 658531 

108 Shoegame-McNeal-Badland (s454) 658532 

109 Rock outcrop-Lithic Ustorthents family-Hogris (s455) 658533 

110 Torriorthents-Cellar (s456) 658534 

111 Spudrock-Rock outcrop-Cellar (s457) 658535 

112 Yaqui-Werlog (s458) 658536 

113 Werlog-Santo Tomas-Riverwash (s459) 658537 

114 Torriorthents (s460) 658538 

115 Typic Ustifluvents-Fluventic Ustochrepts (s462) 658540 

116 Fluventic Ustochrepts-Aquic Ustifluvents (s463) 658541 

117 Vessilla-Rock outcrop (s464) 658542 

118 Teromote-Kopie (s465) 658543 

119 Shoegame-Badland-Aridic Ustochrepts (s468) 658546 

120 Typic Ustochrepts-Lithic Ustochrepts (s470) 658548 

122 Typic Dystrochrepts-Dystric Cryochrepts (s473) 658551 

123 

Typic Dystrochrepts-Rock outcrop-Dystric 

Cryochrepts (s474) 658552 

124 Sobega-Quintana-Kopie (s476) 658554 

125 Dystric Cryochrepts (s477) 658555 

126 Rock outcrop-Lithic Ustochrepts (s478) 658556 

127 

Typic Dystrochrepts-Rock outcrop-Lithic Ustochrepts 

(s479) 658557 

128 Spudrock-Sobega-Rock outcrop (s481) 658559 

129 Spudrock-Rombo-Rock outcrop (s482) 658560 

130 Timhus-Quintana-Flugle (s483) 658561 

131 Ess-Cundiyo (s485) 658563 

132 Vertic Argiborolls (s487) 658565 

133 Pachic Udic Argiborolls (s488) 658566 

134 Rock outcrop-Lithic Haplustolls (s489) 658567 

135 Nakai-Monue-Blackston (s490) 658568 

136 Ustochreptic Calciorthids (s491) 658569 

137 Faraway-Barkerville (s496) 658574 

138 Tours-Showlow-Cibeque (s497) 658575 

139 Rond-Jacks-Chevelon (s498) 658576 

140 Tortugas-Roundtop-Rock outcrop (s499) 658577 

141 Lemitar-Lampshire-Chiricahua (s500) 658578 

142 Tuloso-Tinaja (s501) 658579 
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143 Riverwash-Prewitt-Pinetop-Lynx (s502) 658580 

144 Typic Ustochrepts-Typic Haplustalfs (s5052) 665714 

145 Vertic Haplustalfs-Typic Haplustalfs (s5061) 665723 

146 Typic Haplustalfs-Aridic Haplustalfs (s5062) 665724 

147 Typic Haplustalfs-Lithic Haplustalfs (s5063) 665725 

148 Typic Eutroboralfs-Lithic Haplustalfs (s5065) 665727 

149 

Typic Haplustalfs-Rock outcrop-Eutric Glossoboralfs 

(s5068) 665730 

150 

Rock outcrop-Mollic Cryoboralfs-Eutric Glossoboralfs 

(s5075) 665737 

151 Typic Haplustalfs-Mollic Eutroboralfs (s5076) 665738 

152 Typic Ustifluvents-Fluventic Ustochrepts (s5082) 665744 

153 Fluventic Ustochrepts-Aquic Ustifluvents (s5083) 665745 

154 

Typic Ustorthents-Typic Ustochrepts-Typic 

Udorthents-Rock outcrop (s5085) 665747 

155 

Typic Ustochrepts-Rock outcrop-Aridic Ustochrepts 

(s5087) 665749 

156 Typic Ustochrepts-Fluventic Ustochrepts (s5088) 665750 

157 Udic Ustochrepts-Typic Ustochrepts (s5094) 665756 

158 

Typic Dystrochrepts-Rock outcrop-Dystric 

Cryochrepts (s5100) 665762 

159 

Typic Ustochrepts-Rock outcrop-Lithic Ustochrepts-

Aridic Ustochrepts-Aridic Haplustalfs (s5105) 665767 

160 

Typic Dystrochrepts-Rock outcrop-Lithic Ustochrepts 

(s5106) 665768 

161 Fluventic Haploborolls-Aquic Ustifluvents (s5108) 665770 

162 Typic Argiborolls (s5116) 665778 

163 Seis-Rock outcrop-Orthids-Carlito (s5223) 665885 

164 Tome-Mimbres (s5271) 665933 

165 

Rock outcrop-Lehmans-Chiricahua-Chamberino 

(s5315) 665977 

166 Rock outcrop-Lehmans (s5316) 665978 

167 Rock outcrop-Ledru-Graham (s5317) 665979 

168 Nickel (s5319) 665981 

169 Stellar-Mohave-Mimbres-Berino (s5320) 665982 

170 Hondale (s5321) 665983 

171 Wink-Pintura-Bluepoint (s5322) 665984 

172 Upton-Simona (s5323) 665985 

173 Rock outcrop-Lava flows-Akela-Aftaden (s5324) 665986 

174 Rock outcrop-Muzzler-Luzena (s5325) 665987 
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175 Lonti-Jonale-Deama (s5326) 665988 

176 

White House-Ruidoso-Paymaster-Manzano-Judd 

(s5327) 665989 

177 Scholle-Millett-Ildefonso-Goldust-Cascajo (s5328) 665990 

178 Plack-Guy (s5329) 665991 

180 Loarc-Guy-Dioxice-Datil (s5396) 666058 

181 Water (s8369) 657964 

182 Leanto-Bisoodi-Arntz (s9582) 804813 

183 

Torriorthents-Marcou-Claysprings-Burnswick-Badland 

(s9583) 804816 

184 

Vecont-Trix-Mohall-Denure-Dateland-Casa Grande 

(s9585) 806441 

185 Selevin-Kimrose-Keysto-Caralampi (s9586) 806442 

 

 


